Edexcel C3 2009 January — Question 5

Exam BoardEdexcel
ModuleC3 (Core Mathematics 3)
Year2009
SessionJanuary
TopicComposite & Inverse Functions

5. The functions \(f\) and \(g\) are defined by $$\begin{aligned} & \mathrm { f } : x \mapsto 3 x + \ln x , \quad x > 0 , \quad x \in \mathbb { R }
& \mathrm {~g} : x \mapsto \mathrm { e } ^ { x ^ { 2 } } , \quad x \in \mathbb { R } \end{aligned}$$
  1. Write down the range of g.
  2. Show that the composite function fg is defined by $$\mathrm { fg } : x \mapsto x ^ { 2 } + 3 \mathrm { e } ^ { x ^ { 2 } } , \quad x \in \mathbb { R } .$$
  3. Write down the range of fg.
  4. Solve the equation \(\frac { \mathrm { d } } { \mathrm { d } x } [ \mathrm { fg } ( x ) ] = x \left( x \mathrm { e } ^ { x ^ { 2 } } + 2 \right)\).