Edexcel C34 (Core Mathematics 3 & 4) Specimen

Question 1
View details
  1. (a) Express \(5 \cos 2 \theta - 12 \sin 2 \theta\) in the form \(R \cos ( 2 \theta + \alpha )\), where \(R > 0\) and \(0 < \alpha < 90 ^ { \circ }\) Give the value of \(\alpha\) to 2 decimal places.
    (b) Hence solve, for \(0 \leqslant \theta < 180 ^ { \circ }\), the equation
$$5 \cos 2 \theta - 12 \sin 2 \theta = 10$$ giving your answers to 1 decimal place.
Question 2
View details
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e375f6ad-4a76-42a0-b7bf-ae47e5cbdaeb-04_479_855_310_566} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve with equation \(y = \mathrm { e } ^ { x } \sqrt { \sin x } , 0 \leqslant x \leqslant \pi\). The finite region \(R\), shown shaded in Figure 1, is bounded by the curve and the \(x\)-axis.
  1. Complete the table below with the values of \(y\) corresponding to \(x = \frac { \pi } { 4 }\) and \(x = \frac { \pi } { 2 }\), giving your answers to 5 decimal places.
    \(x\)0\(\frac { \pi } { 4 }\)\(\frac { \pi } { 2 }\)\(\frac { 3 \pi } { 4 }\)\(\pi\)
    \(y\)08.872070
  2. Use the trapezium rule, with all the values of \(y\) in the completed table, to obtain an estimate for the area of the region \(R\). Give your answer to 4 decimal places. The curve \(y = \mathrm { e } ^ { x } \sqrt { \sin x } , 0 \leqslant x \leqslant \pi\), has a maximum turning point at \(Q\), shown in Figure 1.
  3. Find the \(x\) coordinate of \(Q\).
Question 3
View details
  1. Using the substitution \(u = \cos x + 1\), or otherwise, show that
$$\int _ { 0 } ^ { \frac { \pi } { 2 } } \mathrm { e } ^ { ( \cos x + 1 ) } \sin x \mathrm {~d} x = \mathrm { e } ( \mathrm { e } - 1 )$$
Question 4
View details
4. (a) Use the binomial theorem to expand $$( 2 - 3 x ) ^ { - 2 } , \quad | x | < \frac { 2 } { 3 }$$ in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\). Give each coefficient as a simplified fraction. $$\mathrm { f } ( x ) = \frac { a + b x } { ( 2 - 3 x ) ^ { 2 } } , \quad | x | < \frac { 2 } { 3 } , \quad \text { where } a \text { and } b \text { are constants. }$$ In the binomial expansion of \(\mathrm { f } ( x )\), in ascending powers of \(x\), the coefficient of \(x\) is 0 and the coefficient of \(x ^ { 2 }\) is \(\frac { 9 } { 16 }\) Find
(b) the value of \(a\) and the value of \(b\),
(c) the coefficient of \(x ^ { 3 }\), giving your answer as a simplified fraction.
Question 5
View details
  1. The functions \(f\) and \(g\) are defined by
$$\begin{array} { l l } \mathrm { f } : x \mapsto \mathrm { e } ^ { - x } + 2 , & x \in \mathbb { R }
\mathrm {~g} : x \mapsto 2 \ln x , & x > 0 \end{array}$$
  1. Find \(\mathrm { fg } ( x )\), giving your answer in its simplest form.
  2. Find the exact value of \(x\) for which \(\mathrm { f } ( 2 x + 3 ) = 6\)
  3. Find \(\mathrm { f } ^ { - 1 }\), stating its domain.
  4. On the same axes, sketch the curves with equation \(y = \mathrm { f } ( x )\) and \(y = \mathrm { f } ^ { - 1 } ( x )\), giving the coordinates of all the points where the curves cross the axes.
Question 6
View details
6. The curve \(C\) has equation $$16 y ^ { 3 } + 9 x ^ { 2 } y - 54 x = 0$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\) and \(y\).
  2. Find the coordinates of the points on \(C\) where \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\)
Question 7
View details
  1. (a) Show that
$$\cot x - \cot 2 x \equiv \operatorname { cosec } 2 x , \quad x \neq \frac { n \pi } { 2 } , \quad n \in \mathbb { Z }$$ (b) Hence, or otherwise, solve for \(0 \leqslant \theta \leqslant \pi\) $$\operatorname { cosec } \left( 3 \theta + \frac { \pi } { 3 } \right) + \cot \left( 3 \theta + \frac { \pi } { 3 } \right) = \frac { 1 } { \sqrt { 3 } }$$ You must show your working.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
Question 8
View details
8. $$\mathrm { h } ( x ) = \frac { 2 } { x + 2 } + \frac { 4 } { x ^ { 2 } + 5 } - \frac { 18 } { \left( x ^ { 2 } + 5 \right) ( x + 2 ) } , \quad x \geqslant 0$$
  1. Show that \(\mathrm { h } ( x ) = \frac { 2 x } { x ^ { 2 } + 5 }\)
  2. Hence, or otherwise, find \(\mathrm { h } ^ { \prime } ( x )\) in its simplest form. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{e375f6ad-4a76-42a0-b7bf-ae47e5cbdaeb-26_679_1168_733_390} \captionsetup{labelformat=empty} \caption{Figure 2}
    \end{figure} Figure 2 shows a graph of the curve with equation \(y = \mathrm { h } ( x )\).
  3. Calculate the range of \(\mathrm { h } ( x )\).
Question 9
View details
  1. The line \(l _ { 1 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 2
    3
    - 4 \end{array} \right) + \lambda \left( \begin{array} { l } 1
    2
    1 \end{array} \right)\), where \(\lambda\) is a scalar parameter.
The line \(l _ { 2 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } 0
9
- 3 \end{array} \right) + \mu \left( \begin{array} { l } 5
0
2 \end{array} \right)\), where \(\mu\) is a scalar parameter.
Given that \(l _ { 1 }\) and \(l _ { 2 }\) meet at the point \(C\), find
  1. the coordinates of \(C\). The point \(A\) is the point on \(l _ { 1 }\) where \(\lambda = 0\) and the point \(B\) is the point on \(l _ { 2 }\) where \(\mu = - 1\)
  2. Find the size of the angle \(A C B\). Give your answer in degrees to 2 decimal places.
  3. Hence, or otherwise, find the area of the triangle \(A B C\).
Question 10
View details
10. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e375f6ad-4a76-42a0-b7bf-ae47e5cbdaeb-34_599_923_322_571} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows part of the curve \(C\) with parametric equations $$x = \tan \theta , \quad y = \sin \theta , \quad 0 \leqslant \theta \leqslant \frac { \pi } { 2 }$$ The point \(P\) lies on \(C\) and has coordinates \(\left( \sqrt { 3 } , \frac { 1 } { 2 } \sqrt { 3 } \right)\)
  1. Find the value of \(\theta\) at the point \(P\). The line \(l\) is a normal to \(C\) at \(P\). The normal cuts the \(x\)-axis at the point \(Q\).
  2. Show that \(Q\) has coordinates \(( k \sqrt { 3 } , 0 )\), giving the value of the constant \(k\). The finite shaded region \(S\) shown in Figure 3 is bounded by the curve \(C\), the line \(x = \sqrt { 3 }\) and the \(x\)-axis. This shaded region is rotated through \(2 \pi\) radians about the \(x\)-axis to form a solid of revolution.
  3. Find the volume of the solid of revolution, giving your answer in the form \(p \pi \sqrt { 3 } + q \pi ^ { 2 }\), where \(p\) and \(q\) are constants. \includegraphics[max width=\textwidth, alt={}, center]{e375f6ad-4a76-42a0-b7bf-ae47e5cbdaeb-39_61_29_2608_1886}
Question 11
View details
11. A team of conservationists is studying the population of meerkats on a nature reserve. The population is modelled by the differential equation $$\frac { \mathrm { d } P } { \mathrm {~d} t } = \frac { 1 } { 15 } P ( 5 - P ) , \quad t \geqslant 0$$ where \(P\), in thousands, is the population of meerkats and \(t\) is the time measured in years since the study began. Given that when \(t = 0 , P = 1\),
  1. solve the differential equation, giving your answer in the form $$P = \frac { a } { b + c \mathrm { e } ^ { - \frac { 1 } { 3 } t } }$$ where \(a\), \(b\) and \(c\) are integers.
  2. Hence show that the population cannot exceed 5000