Edexcel C34 2017 October — Question 1

Exam BoardEdexcel
ModuleC34 (Core Mathematics 3 & 4)
Year2017
SessionOctober
TopicFixed Point Iteration

1. $$f ( x ) = x ^ { 5 } + x ^ { 3 } - 12 x ^ { 2 } - 8 , \quad x \in \mathbb { R }$$
  1. Show that the equation \(\mathrm { f } ( x ) = 0\) can be written as $$x = \sqrt [ 3 ] { \frac { 4 \left( 3 x ^ { 2 } + 2 \right) } { x ^ { 2 } + 1 } }$$
  2. Use the iterative formula $$x _ { n + 1 } = \sqrt [ 3 ] { \frac { 4 \left( 3 x _ { n } ^ { 2 } + 2 \right) } { x _ { n } ^ { 2 } + 1 } }$$ with \(x _ { 0 } = 2\), to find \(x _ { 1 } , x _ { 2 }\) and \(x _ { 3 }\) giving your answers to 3 decimal places. The equation \(\mathrm { f } ( x ) = 0\) has a single root, \(\alpha\).
  3. By choosing a suitable interval, prove that \(\alpha = 2.247\) to 3 decimal places.