Edexcel C34 2019 June — Question 13

Exam BoardEdexcel
ModuleC34 (Core Mathematics 3 & 4)
Year2019
SessionJune
TopicArea Under & Between Curves

13. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a9870c94-0910-46ec-a54a-44a431cb324e-42_649_709_242_614} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows a sketch of the curve with equation \(y = 12 x ^ { 2 } \ln \left( 2 x ^ { 2 } \right) , x > 0\) The finite region \(R\), shown shaded in Figure 4, is bounded by the curve, the line with equation \(x = 1\), the \(x\)-axis and the line with equation \(x = 2\) The table below shows corresponding values of \(x\) and \(y\) for \(y = 12 x ^ { 2 } \ln \left( 2 x ^ { 2 } \right)\), with the values of \(y\) given to 3 significant figures.
\(x\)11.251.51.752
\(y\)8.3221.440.666.699.8
  1. Use the trapezium rule, with all the values of \(y\), to obtain an estimate for the area of \(R\), giving your answer to 2 significant figures.
  2. Use the substitution \(u = x ^ { 2 }\) to show that the area of \(R\) is given by $$\int _ { 1 } ^ { 4 } 6 u ^ { \frac { 1 } { 2 } } \ln ( 2 u ) \mathrm { d } u$$
  3. Hence, using calculus, find the exact area of \(R\), writing your answer in the form \(a + b \ln 2\), where \(a\) and \(b\) are constants to be found.