Edexcel C34 2019 June — Question 1

Exam BoardEdexcel
ModuleC34 (Core Mathematics 3 & 4)
Year2019
SessionJune
TopicFixed Point Iteration

1. $$f ( x ) = 2 x ^ { 3 } + x - 20$$
  1. Show that the equation \(\mathrm { f } ( x ) = 0\) can be rewritten as $$x = \sqrt [ 3 ] { a - b x }$$ where \(a\) and \(b\) are positive constants to be determined.
  2. Starting with \(x _ { 1 } = 2.1\) use the iteration formula \(x _ { n + 1 } = \sqrt [ 3 ] { a - b x _ { n } }\), with the numerical values of \(a\) and \(b\), to calculate the values of \(x _ { 2 }\) and \(x _ { 3 }\) giving your answers to 3 decimal places.
  3. Using a suitable interval, show that 2.077 is a root of the equation \(\mathrm { f } ( x ) = 0\) correct to 3 decimal places.
  4. Hence state a root, to 3 decimal places, of the equation $$2 ( x + 2 ) ^ { 3 } + x - 18 = 0$$
    VIIIV SIHI NI JIIYM ION OCVIIV SIHI NI JIIIM ION OCVIIV SIHI NI JIIYM ION OC