Edexcel C34 2019 June — Question 8

Exam BoardEdexcel
ModuleC34 (Core Mathematics 3 & 4)
Year2019
SessionJune
TopicProduct & Quotient Rules

8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a9870c94-0910-46ec-a54a-44a431cb324e-22_524_1443_260_246} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of part of the curve \(y = \mathrm { f } ( x )\), where $$\mathrm { f } ( x ) = \frac { 6 x + 2 } { 3 x ^ { 2 } + 5 } , \quad x \in \mathbb { R }$$
  1. Find \(\mathrm { f } ^ { \prime } ( x )\), writing your answer as a single fraction in its simplest form. The curve has two turning points, a maximum at point \(A\) and a minimum at point \(B\), as shown in Figure 2.
  2. Using part (a), find the coordinates of point \(A\) and the coordinates of point \(B\).
  3. State the coordinates of the maximum turning point of the function with equation $$y = \mathrm { f } ( 2 x ) + 4 \quad x \in \mathbb { R }$$
  4. Find the range of the function $$\operatorname { g } ( x ) = \frac { 6 x + 2 } { 3 x ^ { 2 } + 5 } , \quad x \leqslant 0$$