2. (a) Find \(\int \frac { 4 x + 3 } { x } \mathrm {~d} x , \quad x > 0\)
(b) Given that \(y = 25\) at \(x = 1\), solve the differential equation
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { ( 4 x + 3 ) y ^ { \frac { 1 } { 2 } } } { x } \quad x > 0 , y > 0$$
giving your answer in the form \(y = [ \mathrm { g } ( x ) ] ^ { 2 }\).
VJYV SIHI NITIIYIM ION OC
VI4V SIHI NI JAHMA ION OC
VEYV SIHI NI JIIIM ION OO
\includegraphics[max width=\textwidth, alt={}, center]{a9870c94-0910-46ec-a54a-44a431cb324e-05_52_49_2777_1886}