Edexcel C34 2014 June — Question 12

Exam BoardEdexcel
ModuleC34 (Core Mathematics 3 & 4)
Year2014
SessionJune
TopicParametric equations

12. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{423eb549-0873-4185-8faf-12dedafcd108-19_568_956_221_502} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of part of the curve \(C\) with parametric equations $$x = \tan t , \quad y = 2 \sin ^ { 2 } t , \quad 0 \leqslant t < \frac { \pi } { 2 }$$ The finite region \(S\), shown shaded in Figure 3, is bounded by the curve \(C\), the line \(x = \sqrt { 3 }\) and the \(x\)-axis. This shaded region is rotated through \(2 \pi\) radians about the \(x\)-axis to form a solid of revolution.
  1. Show that the volume of the solid of revolution formed is given by $$4 \pi \int _ { 0 } ^ { \frac { \pi } { 3 } } \left( \tan ^ { 2 } t - \sin ^ { 2 } t \right) \mathrm { d } t$$
  2. Hence use integration to find the exact value for this volume.