| Exam Board | Edexcel |
| Module | C34 (Core Mathematics 3 & 4) |
| Year | 2014 |
| Session | June |
| Topic | Addition & Double Angle Formulae |
10. (a) Use the identity for \(\sin ( A + B )\) to prove that
$$\sin 2 A \equiv 2 \sin A \cos A$$
(b) Show that
$$\frac { \mathrm { d } } { \mathrm {~d} x } \left[ \ln \left( \tan \left( \frac { 1 } { 2 } x \right) \right) \right] = \operatorname { cosec } x$$
A curve \(C\) has the equation
$$y = \ln \left( \tan \left( \frac { 1 } { 2 } x \right) \right) - 3 \sin x , \quad 0 < x < \pi$$
(c) Find the \(x\) coordinates of the points on \(C\) where \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\)
Give your answers to 3 decimal places.
(Solutions based entirely on graphical or numerical methods are not acceptable.)