Edexcel C34 2014 June — Question 10

Exam BoardEdexcel
ModuleC34 (Core Mathematics 3 & 4)
Year2014
SessionJune
TopicAddition & Double Angle Formulae

10. (a) Use the identity for \(\sin ( A + B )\) to prove that $$\sin 2 A \equiv 2 \sin A \cos A$$ (b) Show that $$\frac { \mathrm { d } } { \mathrm {~d} x } \left[ \ln \left( \tan \left( \frac { 1 } { 2 } x \right) \right) \right] = \operatorname { cosec } x$$ A curve \(C\) has the equation $$y = \ln \left( \tan \left( \frac { 1 } { 2 } x \right) \right) - 3 \sin x , \quad 0 < x < \pi$$ (c) Find the \(x\) coordinates of the points on \(C\) where \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) Give your answers to 3 decimal places.
(Solutions based entirely on graphical or numerical methods are not acceptable.)