CAIE P1 2009 November — Question 10

Exam BoardCAIE
ModuleP1 (Pure Mathematics 1)
Year2009
SessionNovember
TopicComposite & Inverse Functions

10 Functions \(f\) and \(g\) are defined by $$\begin{aligned} & \mathrm { f } : x \mapsto 2 x + 1 , \quad x \in \mathbb { R } , \quad x > 0
& \mathrm {~g} : x \mapsto \frac { 2 x - 1 } { x + 3 } , \quad x \in \mathbb { R } , \quad x \neq - 3 \end{aligned}$$
  1. Solve the equation \(\operatorname { gf } ( x ) = x\).
  2. Express \(\mathrm { f } ^ { - 1 } ( x )\) and \(\mathrm { g } ^ { - 1 } ( x )\) in terms of \(x\).
  3. Show that the equation \(\mathrm { g } ^ { - 1 } ( x ) = x\) has no solutions.
  4. Sketch in a single diagram the graphs of \(y = \mathrm { f } ( x )\) and \(y = \mathrm { f } ^ { - 1 } ( x )\), making clear the relationship between the graphs.