Edexcel C12 2017 June — Question 12

Exam BoardEdexcel
ModuleC12 (Core Mathematics 1 & 2)
Year2017
SessionJune
TopicAreas Between Curves

12. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{08b1be3e-2d9a-4832-b230-d5519540f494-40_814_713_219_612} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows a sketch of part of the curve \(C\) with equation $$y = x ^ { 3 } - 9 x ^ { 2 } + 26 x - 18$$ The point \(P ( 4,6 )\) lies on \(C\).
  1. Use calculus to show that the normal to \(C\) at the point \(P\) has equation $$2 y + x = 16$$ The region \(R\), shown shaded in Figure 4, is bounded by the curve \(C\), the \(x\)-axis and the normal to \(C\) at \(P\).
  2. Show that \(C\) cuts the \(x\)-axis at \(( 1,0 )\)
  3. Showing all your working, use calculus to find the exact area of \(R\).