- A curve has equation
$$y = 2 x ^ { 3 } - 5 x ^ { 2 } - \frac { 3 } { 2 x } + 7 \quad x > 0$$
- Find, in simplest form, \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
The point \(P\) lies on the curve and has \(x\) coordinate \(\frac { 1 } { 2 }\)
- Find an equation of the normal to the curve at \(P\), writing your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers to be found.
| VILU SIHI NI JIIIM ION OC | VIUV SIHI NI III M M I ON OO | VIAV SIHI NI JIIIM I ION OC |