5 The random variable \(X\) has the geometric distribution \(\operatorname { Geo } ( p )\).
- Show that the probability generating function of \(X\) is \(\frac { \mathrm { pt } } { 1 - \mathrm { qt } }\), where \(\mathrm { q } = 1 - \mathrm { p }\).
- Use the probability generating function of \(X\) to show that \(\operatorname { Var } ( X ) = \frac { \mathrm { q } } { \mathrm { p } ^ { 2 } }\).
Kenny throws an ordinary fair 6-sided dice repeatedly. The random variable \(X\) is the number of throws that Kenny takes in order to obtain a 6 . The random variable \(Z\) denotes the sum of two independent values of \(X\). - Find the probability generating function of \(Z\).