CAIE Further Paper 4 2023 June — Question 5

Exam BoardCAIE
ModuleFurther Paper 4 (Further Paper 4)
Year2023
SessionJune
TopicProbability Generating Functions
TypeDetermine constant in PGF

5 The random variable \(X\) has probability generating function \(\mathrm { G } _ { X } ( \mathrm { t } )\) given by $$\mathrm { G } _ { \mathrm { X } } ( \mathrm { t } ) = \mathrm { k } \left( 1 + 3 \mathrm { t } + 4 \mathrm { t } ^ { 2 } \right)$$ where \(k\) is a constant.
  1. Show that \(\mathrm { E } ( X ) = \frac { 11 } { 8 }\).
    The random variable \(Y\) has probability generating function \(\mathrm { G } _ { \gamma } ( \mathrm { t } )\) given by $$G _ { \gamma } ( t ) = \frac { 1 } { 3 } t ^ { 2 } ( 1 + 2 t )$$ The random variables \(X\) and \(Y\) are independent and \(\mathrm { Z } = \mathrm { X } + \mathrm { Y }\).
  2. Find the probability generating function of \(Z\), expressing your answer as a polynomial in \(t\).
  3. Use your answer to part (b) to find the value of \(\operatorname { Var } ( Z )\).
  4. Write down the most probable value of \(Z\).