5 The random variable \(X\) has probability generating function \(\mathrm { G } _ { X } ( \mathrm { t } )\) given by
$$\mathrm { G } _ { \mathrm { X } } ( \mathrm { t } ) = \mathrm { k } \left( 1 + 3 \mathrm { t } + 4 \mathrm { t } ^ { 2 } \right)$$
where \(k\) is a constant.
- Show that \(\mathrm { E } ( X ) = \frac { 11 } { 8 }\).
The random variable \(Y\) has probability generating function \(\mathrm { G } _ { \gamma } ( \mathrm { t } )\) given by
$$G _ { \gamma } ( t ) = \frac { 1 } { 3 } t ^ { 2 } ( 1 + 2 t )$$
The random variables \(X\) and \(Y\) are independent and \(\mathrm { Z } = \mathrm { X } + \mathrm { Y }\). - Find the probability generating function of \(Z\), expressing your answer as a polynomial in \(t\).
- Use your answer to part (b) to find the value of \(\operatorname { Var } ( Z )\).
- Write down the most probable value of \(Z\).