3 The continuous random variable \(X\) has probability density function f given by
$$f ( x ) = \begin{cases} \frac { 1 } { 5 } x & 0 \leqslant x < 2
\frac { 2 } { 15 } ( 5 - x ) & 2 \leqslant x \leqslant 5
0 & \text { otherwise } \end{cases}$$
- Find the cumulative distribution function of \(X\).
- Find the median value of \(X\).
- Find \(\mathrm { E } \left( X ^ { 2 } \right)\).
- Find \(\mathrm { P } ( 1 \leqslant x \leqslant 3 )\).