2 A random sample of 40 observations of a random variable \(X\) and a random sample of 50 observations of a random variable \(Y\) are taken. The resulting values for the sample means, \(\bar { x }\) and \(\bar { y }\), and the unbiased estimates, \(\mathrm { s } _ { \mathrm { x } } ^ { 2 }\) and \(\mathrm { s } _ { \mathrm { y } } ^ { 2 }\), for the population variances are as follows.
$$\bar { x } = 24.4 \quad \bar { y } = 17.2 \quad s _ { x } ^ { 2 } = 10.2 \quad s _ { y } ^ { 2 } = 11.1$$
Find a \(90 \%\) confidence interval for the difference between the population means of \(X\) and \(Y\).