CAIE Further Paper 2 2023 June — Question 8

Exam BoardCAIE
ModuleFurther Paper 2 (Further Paper 2)
Year2023
SessionJune
TopicHyperbolic functions

8
  1. Starting from the definitions of sech and tanh in terms of exponentials, prove that $$1 - \operatorname { sech } ^ { 2 } t = \tanh ^ { 2 } t$$ \includegraphics[max width=\textwidth, alt={}]{d3ddf5ce-4399-4438-ab67-7bdb2e1bea6e-14_77_1547_360_347} ......................................................................................................................................... ......................................................................................................................................... . ........................................................................................................................................ ........................................................................................................................................ .......................................................................................................................................
    \includegraphics[max width=\textwidth, alt={}, center]{d3ddf5ce-4399-4438-ab67-7bdb2e1bea6e-14_72_1573_911_324}
    \includegraphics[max width=\textwidth, alt={}, center]{d3ddf5ce-4399-4438-ab67-7bdb2e1bea6e-14_67_1570_1005_324} The curve \(C\) has parametric equations $$\mathrm { x } = \frac { 1 } { 2 } \tanh ^ { 2 } \mathrm { t } + \text { Insecht } , \quad \mathrm { y } = 1 + \tanh ^ { 4 } \mathrm { t } , \quad \text { for } t > 0$$
  2. Show that \(\frac { d y } { d x } = - 4 \operatorname { sech } ^ { 2 } t\).
  3. Find the coordinates of the point on \(C\) with \(\frac { d ^ { 2 } y } { d x ^ { 2 } } = - \frac { 9 } { 2 }\), giving your answer in the form \(( a + \ln b , c )\) where \(a , b\) and \(c\) are rational numbers.
    If you use the following page to complete the answer to any question, the question number must be clearly shown.