CAIE Further Paper 2 (Further Paper 2) 2023 June

Question 1
View details
1
  1. Show that the system of equations $$\begin{array} { r } x + 2 y + 3 z = 1
    4 x + 5 y + 6 z = 1
    7 x + 8 y + 9 z = 1 \end{array}$$ does not have a unique solution.
  2. Show that the system of equations in part (a) is consistent. Interpret this situation geometrically.
Question 2
View details
2 Use the substitution \(z = x + y\) to find the solution of the differential equation $$\frac { d y } { d x } = \frac { 1 + 3 x + 3 y } { 3 x + 3 y - 1 }$$ for which \(y = 0\) when \(x = 1\). Give your answer in the form \(\operatorname { aln } ( \mathrm { x } + \mathrm { y } ) + \mathrm { b } ( \mathrm { x } - \mathrm { y } ) + \mathrm { c } = 0\), where \(a , b\) and \(c\) are constants to be determined.
Question 3
View details
3
  1. By considering the binomial expansion of \(\left( z + z ^ { - 1 } \right) ^ { 4 }\), where \(z = \cos \theta + \mathrm { i } \sin \theta\), use de Moivre's theorem to show that \(\cos ^ { 4 } \theta = \frac { 1 } { 8 } ( \cos 4 \theta + 4 \cos 2 \theta + 3 )\).
  2. Use the substitution \(x = \sin \theta\) to find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } } \left( 1 - x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } \mathrm {~d} x\).
Question 4
View details
4 The integral \(\mathrm { I } _ { \mathrm { n } }\) is defined by \(\mathrm { I } _ { \mathrm { n } } = \int _ { 0 } ^ { 1 } \left( 1 + \mathrm { x } ^ { 5 } \right) ^ { \mathrm { n } } \mathrm { dx }\).
  1. By considering \(\frac { d } { d x } \left( x \left( 1 + x ^ { 5 } \right) ^ { n } \right)\), or otherwise, show that $$( 5 n + 1 ) l _ { n } = 2 ^ { n } + 5 n l _ { n - 1 }$$
  2. Find the exact value of \(I _ { 3 }\).
Question 5
View details
5 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } 18 & 5 & - 11
8 & 6 & - 4
32 & 10 & - 20 \end{array} \right)$$
  1. Show that the characteristic equation of \(\mathbf { A }\) is \(\lambda ^ { 3 } - 4 \lambda ^ { 2 } - 20 \lambda + 48 = 0\) and hence find the eigenvalues of \(\mathbf { A }\).
  2. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { 5 } = \mathbf { P D P } ^ { - 1 }\).
Question 6
View details
6 Find the particular solution of the differential equation $$\frac { d ^ { 2 } x } { d t ^ { 2 } } - 12 \frac { d x } { d t } + 36 x = 37 \sin t$$ given that, when \(t = 0 , x = \frac { d x } { d t } = 0\).
Question 7
View details
7
  1. Use the substitution \(\mathrm { u } = \mathrm { x } ^ { 2 } - 1\) to find \(\int \frac { x } { \sqrt { x ^ { 2 } - 1 } } \mathrm {~d} x\).
    \includegraphics[max width=\textwidth, alt={}, center]{d3ddf5ce-4399-4438-ab67-7bdb2e1bea6e-12_778_1548_1007_296} The diagram shows the curve with equation \(\mathrm { y } = \cosh ^ { - 1 } \mathrm { x }\) together with a set of \(( N - 1 )\) rectangles of unit width.
  2. By considering the sum of the areas of these rectangles, show that $$\sum _ { r = 2 } ^ { N } \ln \left( r + \sqrt { r ^ { 2 } - 1 } \right) > N \ln \left( N + \sqrt { N ^ { 2 } - 1 } \right) - \sqrt { N ^ { 2 } - 1 }$$
  3. Use a similar method to find, in terms of \(N\), an upper bound for \(\sum _ { \mathrm { r } = 2 } ^ { \mathrm { N } } \ln \left( \mathrm { r } + \sqrt { \mathrm { r } ^ { 2 } - 1 } \right)\).
Question 8
View details
8
  1. Starting from the definitions of sech and tanh in terms of exponentials, prove that $$1 - \operatorname { sech } ^ { 2 } t = \tanh ^ { 2 } t$$ \includegraphics[max width=\textwidth, alt={}]{d3ddf5ce-4399-4438-ab67-7bdb2e1bea6e-14_77_1547_360_347} ......................................................................................................................................... ......................................................................................................................................... . ........................................................................................................................................ ........................................................................................................................................ .......................................................................................................................................
    \includegraphics[max width=\textwidth, alt={}, center]{d3ddf5ce-4399-4438-ab67-7bdb2e1bea6e-14_72_1573_911_324}
    \includegraphics[max width=\textwidth, alt={}, center]{d3ddf5ce-4399-4438-ab67-7bdb2e1bea6e-14_67_1570_1005_324} The curve \(C\) has parametric equations $$\mathrm { x } = \frac { 1 } { 2 } \tanh ^ { 2 } \mathrm { t } + \text { Insecht } , \quad \mathrm { y } = 1 + \tanh ^ { 4 } \mathrm { t } , \quad \text { for } t > 0$$
  2. Show that \(\frac { d y } { d x } = - 4 \operatorname { sech } ^ { 2 } t\).
  3. Find the coordinates of the point on \(C\) with \(\frac { d ^ { 2 } y } { d x ^ { 2 } } = - \frac { 9 } { 2 }\), giving your answer in the form \(( a + \ln b , c )\) where \(a , b\) and \(c\) are rational numbers.
    If you use the following page to complete the answer to any question, the question number must be clearly shown.