CAIE Further Paper 2 2022 November — Question 7

Exam BoardCAIE
ModuleFurther Paper 2 (Further Paper 2)
Year2022
SessionNovember
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicComplex numbers 2

7
  1. State the sum of the series \(1 + \mathrm { w } + \mathrm { w } ^ { 2 } + \mathrm { w } ^ { 3 } + \ldots + \mathrm { w } ^ { \mathrm { n } - 1 }\), for \(w \neq 1\).
  2. Show that \(( 1 + i \tan \theta ) ^ { k } = \sec ^ { k } \theta ( \cos k \theta + i \sin k \theta )\), where \(\theta\) is not an integer multiple of \(\frac { 1 } { 2 } \pi\).
  3. By considering \(\sum _ { \mathrm { k } = 0 } ^ { \mathrm { n } - 1 } ( 1 + \mathrm { i } \tan \theta ) ^ { \mathrm { k } }\), show that $$\sum _ { k = 0 } ^ { n - 1 } \sec ^ { k } \theta \sin k \theta = \cot \theta \left( 1 - \sec ^ { n } \theta \cos n \theta \right)$$ provided \(\theta\) is not an integer multiple of \(\frac { 1 } { 2 } \pi\).
  4. Hence find \(\sum _ { k = 0 } ^ { 6 m - 1 } 2 ^ { k } \sin \left( \frac { 1 } { 3 } k \pi \right)\) in terms of \(m\).

7 (a) State the sum of the series $1 + \mathrm { w } + \mathrm { w } ^ { 2 } + \mathrm { w } ^ { 3 } + \ldots + \mathrm { w } ^ { \mathrm { n } - 1 }$, for $w \neq 1$.\\

(b) Show that $( 1 + i \tan \theta ) ^ { k } = \sec ^ { k } \theta ( \cos k \theta + i \sin k \theta )$, where $\theta$ is not an integer multiple of $\frac { 1 } { 2 } \pi$.\\

(c) By considering $\sum _ { \mathrm { k } = 0 } ^ { \mathrm { n } - 1 } ( 1 + \mathrm { i } \tan \theta ) ^ { \mathrm { k } }$, show that

$$\sum _ { k = 0 } ^ { n - 1 } \sec ^ { k } \theta \sin k \theta = \cot \theta \left( 1 - \sec ^ { n } \theta \cos n \theta \right)$$

provided $\theta$ is not an integer multiple of $\frac { 1 } { 2 } \pi$.\\

(d) Hence find $\sum _ { k = 0 } ^ { 6 m - 1 } 2 ^ { k } \sin \left( \frac { 1 } { 3 } k \pi \right)$ in terms of $m$.\\

\hfill \mbox{\textit{CAIE Further Paper 2 2022 Q7}}