CAIE Further Paper 2 2022 November — Question 4

Exam BoardCAIE
ModuleFurther Paper 2 (Further Paper 2)
Year2022
SessionNovember
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicHyperbolic functions

4
  1. Starting from the definitions of cosh and sinh in terms of exponentials, prove that $$\cosh ^ { 2 } x - \sinh ^ { 2 } x = 1 .$$
  2. Show that \(\frac { \mathrm { d } } { \mathrm { dx } } \left( \tan ^ { - 1 } ( \sinh x ) \right) = \operatorname { sech } x\).
  3. Sketch the graph of \(y = \operatorname { sechx }\), stating the equation of the asymptote.
  4. By considering a suitable set of \(n\) rectangles of unit width, use your sketch to show that $$\sum _ { r = 1 } ^ { n } \operatorname { sechr } < \tan ^ { - 1 } ( \operatorname { sinhn } )$$
  5. Hence state an upper bound, in terms of \(\pi\), for \(\sum _ { r = 1 } ^ { \infty }\) sech \(r\).

4 (a) Starting from the definitions of cosh and sinh in terms of exponentials, prove that

$$\cosh ^ { 2 } x - \sinh ^ { 2 } x = 1 .$$

(b) Show that $\frac { \mathrm { d } } { \mathrm { dx } } \left( \tan ^ { - 1 } ( \sinh x ) \right) = \operatorname { sech } x$.\\

(c) Sketch the graph of $y = \operatorname { sechx }$, stating the equation of the asymptote.\\
(d) By considering a suitable set of $n$ rectangles of unit width, use your sketch to show that

$$\sum _ { r = 1 } ^ { n } \operatorname { sechr } < \tan ^ { - 1 } ( \operatorname { sinhn } )$$

(e) Hence state an upper bound, in terms of $\pi$, for $\sum _ { r = 1 } ^ { \infty }$ sech $r$.\\

\hfill \mbox{\textit{CAIE Further Paper 2 2022 Q4}}