| Exam Board | CAIE |
|---|---|
| Module | Further Paper 2 (Further Paper 2) |
| Year | 2022 |
| Session | November |
| Paper | Download PDF ↗ |
| Mark scheme | Download PDF ↗ |
| Topic | Invariant lines and eigenvalues and vectors |
6 The matrix $\mathbf { A }$ is given by
$$A = \left( \begin{array} { r r r }
2 & - 3 & - 7 \\
0 & 5 & 7 \\
0 & 0 & - 2
\end{array} \right) .$$
(a) Find a matrix $\mathbf { P }$ and a diagonal matrix $\mathbf { D }$ such that $\mathbf { A } ^ { 5 } = \mathbf { P D P } ^ { - 1 }$.\\
(b) Use the characteristic equation of $\mathbf { A }$ to show that
$$\mathbf { A } ^ { 4 } = a \mathbf { A } ^ { 2 } + b \mathbf { I } ,$$
where $a$ and $b$ are integers to be determined.\\
\hfill \mbox{\textit{CAIE Further Paper 2 2022 Q6}}