OCR MEI FP1 — Question 9

Exam BoardOCR MEI
ModuleFP1 (Further Pure Mathematics 1)
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicLinear transformations

9 You are given the matrix \(\mathbf { M } = \left( \begin{array} { r r } 0.8 & 0.6 \\ 0.6 & - 0.8 \end{array} \right)\).
  1. Calculate \(\mathbf { M } ^ { 2 }\). You are now given that the matrix \(M\) represents a reflection in a line through the origin.
  2. Explain how your answer to part (i) relates to this information.
  3. By investigating the invariant points of the reflection, find the equation of the mirror line.
  4. Describe fully the transformation represented by the matrix \(\mathbf { P } = \left( \begin{array} { c c } 0.8 & - 0.6 \\ 0.6 & 0.8 \end{array} \right)\).
  5. A composite transformation is formed by the transformation represented by \(\mathbf { P }\) followed by the transformation represented by \(\mathbf { M }\). Find the single matrix that represents this composite transformation.
  6. The composite transformation described in part (v) is equivalent to a single reflection. What is the equation of the mirror line of this reflection? \section*{OXFORD CAMBRIDGE AND RSA EXAMINATIONS} \section*{Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education} \section*{MEI STRUCTURED MATHEMATICS
    4755
    \textbackslash section*\{Further Concepts For Advanced Mathematics (FP1)\}}
    Tuesday 7 JUNE 2005Afternoon1 hour 30 minutes
    Additional materials:
    Answer booklet
    Graph paper
    MEI Examination Formulae and Tables (MF2)
    TIME 1 hour 30 minutes
    • Write your name, centre number and candidate number in the spaces provided on the answer booklet.
    • Answer all the questions.
    • You are permitted to use a graphical calculator in this paper.
    • The number of marks is given in brackets [ ] at the end of each question or part question.
    • You are advised that an answer may receive no marks unless you show sufficient defail of the working to indicate that a correct method is being used.
    • Final answers should be given to a degree of accuracy appropriate to the context.
    • The total number of marks for this paper is 72.

9 You are given the matrix $\mathbf { M } = \left( \begin{array} { r r } 0.8 & 0.6 \\ 0.6 & - 0.8 \end{array} \right)$.\\
(i) Calculate $\mathbf { M } ^ { 2 }$.

You are now given that the matrix $M$ represents a reflection in a line through the origin.\\
(ii) Explain how your answer to part (i) relates to this information.\\
(iii) By investigating the invariant points of the reflection, find the equation of the mirror line.\\
(iv) Describe fully the transformation represented by the matrix $\mathbf { P } = \left( \begin{array} { c c } 0.8 & - 0.6 \\ 0.6 & 0.8 \end{array} \right)$.\\
(v) A composite transformation is formed by the transformation represented by $\mathbf { P }$ followed by the transformation represented by $\mathbf { M }$. Find the single matrix that represents this composite transformation.\\
(vi) The composite transformation described in part (v) is equivalent to a single reflection. What is the equation of the mirror line of this reflection?

\section*{OXFORD CAMBRIDGE AND RSA EXAMINATIONS}
\section*{Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education}
\section*{MEI STRUCTURED MATHEMATICS \\
 4755 \\
 \textbackslash section*\{Further Concepts For Advanced Mathematics (FP1)\}}
\begin{center}
\begin{tabular}{|l|l|l|}
\hline
Tuesday 7 JUNE 2005 & Afternoon & 1 hour 30 minutes \\
\hline
\begin{tabular}{l}
Additional materials: \\
Answer booklet \\
Graph paper \\
MEI Examination Formulae and Tables (MF2) \\
\end{tabular} &  &  \\
\hline
\end{tabular}
\end{center}

TIME 1 hour 30 minutes

\begin{itemize}
  \item Write your name, centre number and candidate number in the spaces provided on the answer booklet.
  \item Answer all the questions.
  \item You are permitted to use a graphical calculator in this paper.
\end{itemize}

\begin{itemize}
  \item The number of marks is given in brackets [ ] at the end of each question or part question.
  \item You are advised that an answer may receive no marks unless you show sufficient defail of the working to indicate that a correct method is being used.
  \item Final answers should be given to a degree of accuracy appropriate to the context.
  \item The total number of marks for this paper is 72.
\end{itemize}

\hfill \mbox{\textit{OCR MEI FP1  Q9}}