CAIE FP1 2018 November — Question 10

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2018
SessionNovember
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicSecond order differential equations

10
  1. Find the particular solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 10 x = 37 \sin 3 t$$ given that \(x = 3\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0\) when \(t = 0\).
  2. Show that, for large positive values of \(t\) and for any initial conditions, $$x \approx \sqrt { } ( 37 ) \sin ( 3 t - \phi ) ,$$ where the constant \(\phi\) is such that \(\tan \phi = 6\).

10 (i) Find the particular solution of the differential equation

$$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 10 x = 37 \sin 3 t$$

given that $x = 3$ and $\frac { \mathrm { d } x } { \mathrm {~d} t } = 0$ when $t = 0$.\\

(ii) Show that, for large positive values of $t$ and for any initial conditions,

$$x \approx \sqrt { } ( 37 ) \sin ( 3 t - \phi ) ,$$

where the constant $\phi$ is such that $\tan \phi = 6$.\\

\hfill \mbox{\textit{CAIE FP1 2018 Q10}}