CAIE FP1 2018 November — Question 8 5 marks

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2018
SessionNovember
Marks5
PaperDownload PDF ↗
Mark schemeDownload PDF ↗
TopicVectors: Cross Product & Distances

8 The plane \(\Pi _ { 1 }\) has equation $$\mathbf { r } = \left( \begin{array} { l } 5 \\ 1 \\ 0 \end{array} \right) + s \left( \begin{array} { r } - 4 \\ 1 \\ 3 \end{array} \right) + t \left( \begin{array} { l } 0 \\ 1 \\ 2 \end{array} \right)$$
  1. Find a cartesian equation of \(\Pi _ { 1 }\).
    The plane \(\Pi _ { 2 }\) has equation \(3 x + y - z = 3\).
  2. Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), giving your answer in degrees.
  3. Find an equation of the line of intersection of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), giving your answer in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b }\). [5]

8 The plane $\Pi _ { 1 }$ has equation

$$\mathbf { r } = \left( \begin{array} { l } 
5 \\
1 \\
0
\end{array} \right) + s \left( \begin{array} { r } 
- 4 \\
1 \\
3
\end{array} \right) + t \left( \begin{array} { l } 
0 \\
1 \\
2
\end{array} \right)$$

(i) Find a cartesian equation of $\Pi _ { 1 }$.\\

The plane $\Pi _ { 2 }$ has equation $3 x + y - z = 3$.\\
(ii) Find the acute angle between $\Pi _ { 1 }$ and $\Pi _ { 2 }$, giving your answer in degrees.\\

(iii) Find an equation of the line of intersection of $\Pi _ { 1 }$ and $\Pi _ { 2 }$, giving your answer in the form $\mathbf { r } = \mathbf { a } + \lambda \mathbf { b }$. [5]\\

\hfill \mbox{\textit{CAIE FP1 2018 Q8 [5]}}