A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Taylor series
Q8
AQA Further Paper 2 2022 June — Question 8
Exam Board
AQA
Module
Further Paper 2 (Further Paper 2)
Year
2022
Session
June
Topic
Taylor series
Type
Maclaurin series for products/secant
8
The function f is defined as \(\mathrm { f } ( x ) = \sec x\) 8
Show that \(\mathrm { f } ^ { ( 4 ) } ( 0 ) = 5\)
8
(ii) Hence find the first three non-zero terms of the Maclaurin series for \(\mathrm { f } ( x ) = \sec x\)
8
Prove that $$\lim _ { x \rightarrow 0 } \left( \frac { \sec x - \cosh x } { x ^ { 4 } } \right) = \frac { 1 } { 6 }$$
This paper
(14 questions)
View full paper
Q1
Q2
1
Q3
Q4
Q5
4
Q6
Q7
Q8
Q9
3
Q10
4
Q11
2
Q12
Q13
4
Q14
5