AQA Further Paper 2 (Further Paper 2) 2022 June

Question 1
View details
1 Find the imaginary part of $$\frac { 5 + \mathrm { i } } { 1 - \mathrm { i } }$$ Circle your answer.
-3
-2
Question 2 1 marks
View details
2
3 2 Find the mean value of the function \(\mathrm { f } ( x ) = 10 x ^ { 4 }\) between \(x = 0\) and \(x = a\) Circle your answer.
[0pt] [1 mark]
\(10 a ^ { 3 }\)
\(40 a ^ { 3 }\)
\(2 a ^ { 4 }\)
\(4 a ^ { 5 }\)
Question 3
View details
3 The roots of the equation \(x ^ { 2 } - p x - 6 = 0\) are \(\alpha\) and \(\beta\) Find \(\alpha ^ { 2 } + \beta ^ { 2 }\) in terms of \(p\)
Circle your answer.
\(p ^ { 2 } - 6\)
\(p ^ { 2 } + 6\)
\(p ^ { 2 } - 12\)
\(p ^ { 2 } + 12\)
Question 4
View details
4 Which of the following graphs intersects the graph of \(y = \sinh x\) at exactly one point? Circle your answer.
\(y = \operatorname { cosech } x\)
\(y = \cosh x\)
\(y = \operatorname { coth } x\)
\(y = \operatorname { sech } x\)
Question 5 4 marks
View details
5 Prove by induction that, for all integers \(n \geq 1\), $$\sum _ { r = 1 } ^ { n } r ^ { 3 } = \left\{ \frac { 1 } { 2 } n ( n + 1 ) \right\} ^ { 2 }$$ [4 marks]
Question 6
View details
6 The diagram below shows part of the graph of \(y = \mathrm { f } ( x )\) The line \(T P Q\) is a tangent to the graph of \(y = \mathrm { f } ( x )\) at the point \(P \left( \frac { a + b } { 2 } , \mathrm { f } \left( \frac { a + b } { 2 } \right) \right)\)
The points \(S ( a , 0 )\) and \(T\) lie on the line \(x = a\)
The points \(Q\) and \(R ( b , 0 )\) lie on the line \(x = b\)
\includegraphics[max width=\textwidth, alt={}, center]{74b8239a-1f46-45e7-ad20-2dce7bf4baf6-05_748_696_669_671} Sharon uses the mid-ordinate rule with one strip to estimate the value of the integral \(\int _ { a } ^ { b } \mathrm { f } ( x ) \mathrm { d } x\) By considering the area of the trapezium QRST, state, giving reasons, whether you would expect Sharon's estimate to be an under-estimate or an over-estimate.
Question 7
View details
7 The function f is defined by $$\mathrm { f } ( x ) = \frac { a x - 5 } { 2 x + b } \quad x \in \mathbb { R } , x \neq \frac { 9 } { 2 }$$ where \(a\) and \(b\) are integers.
The graph of \(y = \mathrm { f } ( x )\) has asymptotes \(x = \frac { 9 } { 2 }\) and \(y = 3\)
7
  1. Find the value of \(a\) and the value of \(b\)
    7
  2. Solve the inequality $$\mathrm { f } ( x ) \leq x + 2$$ Fully justify your answer.
Question 8
View details
8
  1. The function f is defined as \(\mathrm { f } ( x ) = \sec x\) 8
    1. Show that \(\mathrm { f } ^ { ( 4 ) } ( 0 ) = 5\)
      8
  2. (ii) Hence find the first three non-zero terms of the Maclaurin series for \(\mathrm { f } ( x ) = \sec x\)
    8
  3. Prove that $$\lim _ { x \rightarrow 0 } \left( \frac { \sec x - \cosh x } { x ^ { 4 } } \right) = \frac { 1 } { 6 }$$
Question 9 3 marks
View details
9
  1. A curve passes through the point (5, 12.3) and satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \left( x ^ { 2 } - 9 \right) ^ { \frac { 1 } { 2 } } + \frac { 2 x y } { x ^ { 2 } - 9 } \quad x > 3$$ Use Euler's step by step method once, and then the midpoint formula $$y _ { r + 1 } = y _ { r - 1 } + 2 h \mathrm { f } \left( x _ { r } , y _ { r } \right) , \quad x _ { r + 1 } = x _ { r } + h$$ once, each with a step length of 0.1 , to estimate the value of \(y\) when \(x = 5.2\)
    Give your answer to six significant figures.
    9
    1. Find the general solution of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \left( x ^ { 2 } - 9 \right) ^ { \frac { 1 } { 2 } } + \frac { 2 x y } { x ^ { 2 } - 9 } \quad ( x > 3 )$$ 9
  2. (ii) Given that \(y\) satisfies the differential equation in part (b)(i) and that \(y = 12.3\) when \(x = 5\), find the value of \(y\) when \(x = 5.2\) Give your answer to six significant figures.
    [0pt] [3 marks]
    9
  3. Comment on the accuracy of your answer to part (a).
Question 10 4 marks
View details
10 The curve \(C _ { 1 }\) has equation $$\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 4 } = 1$$ The curve \(C _ { 2 }\) has equation $$x ^ { 2 } - 25 y ^ { 2 } - 6 x - 200 y - 416 = 0$$ 10
  1. Find a sequence of transformations that maps the graph of \(C _ { 1 }\) onto the graph of \(C _ { 2 }\) [4 marks]
    10
  2. Find the equations of the asymptotes to \(C _ { 2 }\)
    Give your answers in the form \(a x + b y + c = 0\) where \(a , b\) and \(c\) are integers.
Question 11 2 marks
View details
11
  1. Find the eigenvalues and corresponding eigenvectors of the matrix $$\mathbf { M } = \left[ \begin{array} { c c } \frac { 5 } { 2 } & - \frac { 3 } { 2 }
    - \frac { 3 } { 2 } & \frac { 13 } { 2 } \end{array} \right]$$ 11
    1. Describe how the directions of the invariant lines of the transformation represented by \(\mathbf { M }\) are related to each other. Fully justify your answer.
      [0pt] [2 marks]
      11
  2. (ii) Describe fully the transformation represented by \(\mathbf { M }\)
Question 12
View details
12 The shaded region shown in the diagram below is bounded by the \(x\)-axis, the curve \(y = \mathrm { f } ( x )\), and the lines \(x = a\) and \(x = b\)
\includegraphics[max width=\textwidth, alt={}, center]{74b8239a-1f46-45e7-ad20-2dce7bf4baf6-16_661_721_406_662} The shaded region is rotated through \(2 \pi\) radians about the \(x\)-axis to form a solid.
12
  1. Show that the volume of this solid is $$\pi \int _ { a } ^ { b } ( \mathrm { f } ( x ) ) ^ { 2 } \mathrm {~d} x$$ 12
  2. In the case where \(a = 1 , b = 2\) and $$f ( x ) = \frac { x + 3 } { ( x + 1 ) \sqrt { x } }$$ show that the volume of the solid is $$\pi \left( \ln \left( \frac { 2 ^ { m } } { 3 ^ { n } } \right) - \frac { 2 } { 3 } \right)$$ where \(m\) and \(n\) are integers.
Question 13 4 marks
View details
13
  1. The matrix A represents a reflection in the line \(y = m x\), where \(m\) is a constant. Show that \(\mathbf { A } = \left( \frac { 1 } { m ^ { 2 } + 1 } \right) \left[ \begin{array} { c c } 1 - m ^ { 2 } & 2 m
    2 m & m ^ { 2 } - 1 \end{array} \right]\)
    You may use the result in the formulae booklet. 13
  2. \(\quad\) The matrix \(\mathbf { B }\) is defined as \(\mathbf { B } = \left[ \begin{array} { l l } 3 & 0
    0 & 3 \end{array} \right]\)
    Show that \(( \mathbf { B A } ) ^ { 2 } = k \mathbf { I }\)
    where \(\mathbf { I }\) is the \(2 \times 2\) identity matrix and \(k\) is an integer.
    13
    1. The diagram below shows a point \(P\) and the line \(y = m x\) Draw four lines on the diagram to demonstrate the result proved in part (b).
      Label as \(P ^ { \prime }\) the image of \(P\) under the transformation represented by (BA) \({ } ^ { 2 }\)
      \includegraphics[max width=\textwidth, alt={}, center]{74b8239a-1f46-45e7-ad20-2dce7bf4baf6-20_579_1068_584_488} 13
  3. (ii) Explain how your completed diagram shows the result proved in part (b).
    13
  4. The matrix \(\mathbf { C }\) is defined as \(\mathbf { C } = \left[ \begin{array} { c c } \frac { 12 } { 5 } & \frac { 9 } { 5 }
    \frac { 9 } { 5 } & - \frac { 12 } { 5 } \end{array} \right]\)
    Find the value of \(m\) such that \(\mathbf { C } = \mathbf { B A }\) Fully justify your answer.
    [0pt] [4 marks]
Question 14 5 marks
View details
14 On an isolated island some rabbits have been accidently introduced. In order to eliminate them, conservationists have introduced some birds of prey.
At time \(t\) years \(( t \geq 0 )\) there are \(x\) rabbits and \(y\) birds of prey.
At time \(t = 0\) there are 1755 rabbits and 30 birds of prey.
When \(t > 0\) it is assumed that:
  • the rabbits will reproduce at a rate of \(a \%\) per year
  • each bird of prey will kill, on average, \(b\) rabbits per year
  • the death rate of the birds of prey is \(c\) birds per year
  • the number of birds of prey will increase at a rate of \(d \%\) of the rabbit population per year.
This system is represented by the coupled differential equations: $$\begin{aligned} & \frac { \mathrm { d } x } { \mathrm {~d} t } = 0.4 x - 13 y
& \frac { \mathrm {~d} y } { \mathrm {~d} t } = 0.01 x - 1.95 \end{aligned}$$ 14
  1. State the value of \(a\), the value of \(b\), the value of \(c\) and the value of \(d\)
    [0pt] [2 marks]
    14
  2. Solve the coupled differential equations to find both \(x\) and \(y\) in terms of \(t\)