| Exam Board | AQA |
| Module | Further Paper 1 (Further Paper 1) |
| Year | 2024 |
| Session | June |
| Topic | Integration using inverse trig and hyperbolic functions |
17 By making a suitable substitution, show that
$$\int _ { - 2 } ^ { 1 } \sqrt { x ^ { 2 } + 6 x + 8 } d x = 2 \sqrt { 15 } - \frac { 1 } { 2 } \cosh ^ { - 1 } ( 4 )$$