3 Alex and Sam are playing a zero-sum game.
The game is represented by the pay-off matrix for Alex.
| Sam | |
| \cline { 2 - 5 } | Strategy |
| \cline { 2 - 5 } | \(\mathbf { S } _ { \mathbf { 1 } }\) | \(\mathbf { S } _ { \mathbf { 2 } }\) | \(\mathbf { S } _ { \mathbf { 3 } }\) | |
| \(\mathbf { A } _ { \mathbf { 1 } }\) | 2 | 2 | 3 | |
| \cline { 2 - 5 } | \(\mathbf { A } _ { \mathbf { 2 } }\) | 0 | 3 | 5 |
| \(\mathbf { A } _ { \mathbf { 3 } }\) | - 1 | 2 | - 2 | |
3
- Explain why the value of the game is 2
3 - Identify the play-safe strategy for each player.
Each pipe is labelled with its upper capacity in \(\mathrm { cm } ^ { 3 } \mathrm {~s} ^ { - 1 }\)
\includegraphics[max width=\textwidth, alt={}, center]{5a826f8b-4751-4589-ad0a-109fc5c821f2-04_620_940_450_550}