Questions where a complete or partial probability distribution is explicitly given in a table or formula, and the task is to calculate probabilities directly using addition or the complement rule.
9 questions
| \(\boldsymbol { x }\) | 2 | 4 | 5 | 7 | 8 |
| \(\mathbf { P } ( \boldsymbol { X } = \boldsymbol { x } )\) | 0.25 | 0.3 | 0.2 | 0.1 | 0.15 |
| \(x\) | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| \(\mathrm { P } ( X = x )\) | 0.09 | 0.12 | 0.22 | 0.16 | \(p\) | \(2 p\) | 0.2 |
| \(\boldsymbol { x }\) | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| \(\mathbf { P } ( \boldsymbol { X } = \boldsymbol { x } )\) | 0 | 0.19 | 0.26 | 0.20 | 0.13 | 0.07 | 0.15 |
| \(\boldsymbol { x }\) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 or more |
| \(\mathbf { P } ( \boldsymbol { X } = \boldsymbol { x } )\) | 0.30 | 0.10 | 0.05 | 0.07 | 0.03 | 0.16 | 0.09 | 0.20 |
| \(\boldsymbol { x }\) | 1 | 2 | 4 | 9 |
| \(\mathbf { P } ( \boldsymbol { X } = \boldsymbol { x } )\) | 0.2 | 0.4 | 0.35 | 0.05 |
| \(x\) | - 15 | 18 | 29 |
| \(\mathrm { P } ( X = x )\) | 0.2 | 0.7 | 0.1 |