6. Jonathan is an author who is planning his next book tour. He will visit four countries over a period of four weeks. He will visit just one country each week. He will leave from his home, S , and will only return there after visiting the four countries. He will travel directly from one country to the next. He wishes to determine a schedule of four countries to visit.
Table 1 shows the countries he could visit each week.
\begin{table}[h]
2.
| B plays 1 | B plays 2 | B plays 3 | B plays 4 |
| A plays 1 | - 3 | 2 | 5 | - 1 |
| A plays 2 | - 5 | 3 | 1 | - 1 |
| A plays 3 | - 2 | 5 | 4 | 2 |
| A plays 4 | 2 | - 3 | - 1 | 4 |
3.
| 1 | 2 | 3 | 4 | 5 |
| A | 25 | 31 | 27 | 29 | 35 |
| B | 29 | 33 | 40 | 35 | 37 |
| C | 28 | 29 | 35 | 36 | 37 |
| D | 34 | 35 | 36 | \(x\) | 41 |
| E | 36 | 35 | 32 | 31 | 33 |
- You may not need to use all of these tables
4.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{4abb2325-b9df-4849-b08c-7db465fe85e0-18_1056_1572_1450_185}
\captionsetup{labelformat=empty}
\caption{Diagram 1}
\end{figure}
Maximum flow along SBET: \(\_\_\_\_\)
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{4abb2325-b9df-4849-b08c-7db465fe85e0-19_1043_1572_1505_187}
\captionsetup{labelformat=empty}
\caption{Diagram 2}
\end{figure}
5.
| b.v. | \(x\) | \(y\) | \(z\) | \(r\) | \(s\) | \(t\) | Value |
| \(r\) | - 2 | - 6 | 1 | 1 | 0 | 0 | 40 |
| \(s\) | 2 | 3 | 2 | 0 | 1 | 0 | 80 |
| \(t\) | 1 | 2 | 2 | 0 | 0 | 1 | 50 |
| \(P\) | - 4 | - 2 | \(- k\) | 0 | 0 | 0 | 0 |
You may not need to use all of these tableaux
| b.v. | \(x\) | \(y\) | \(z\) | \(r\) | \(s\) | \(t\) | Value | Row Ops |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| \(P\) | | | | | | | | |
| b.v. | \(x\) | \(y\) | \(z\) | \(r\) | \(s\) | \(t\) | Value | Row Ops |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| \(P\) | | | | | | | | |
| b.v. | \(x\) | \(y\) | \(z\) | \(r\) | \(s\) | \(t\) | Value | Row Ops |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| \(P\) | | | | | | | | |
| b.v. | \(x\) | \(y\) | \(z\) | \(r\) | \(s\) | \(t\) | Value | Row Ops |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| \(P\) | | | | | | | | |
| b.v. | \(x\) | \(y\) | \(z\) | \(r\) | \(s\) | \(t\) | Value | Row Ops |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| \(P\) | | | | | | | | |
6.
| Stage | State | Action | Destination | Value |
| 0 | I | IS | S | \(30 - 5 = 25 ^ { * }\) |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| Stage | State | Action | Destination | Value |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |