Edexcel D2 2018 June — Question 5

Exam BoardEdexcel
ModuleD2 (Decision Mathematics 2)
Year2018
SessionJune
TopicThe Simplex Algorithm

5. The initial tableau for a linear programming problem in \(x , y\) and \(z\) is shown below. The objective function to be maximised is \(P = 4 x + 2 y + k z\), where \(k\) is a positive constant.
Basic Variable\(x\)\(y\)\(z\)r\(s\)\(t\)Value
\(r\)-2-6110040
\(s\)23201080
\(t\)12200150
\(P\)-4-2-k0000
  1. Using the information in the tableau, write down the three constraints as inequalities.
  2. By increasing \(x\), perform one complete iteration of the simplex algorithm to obtain tableau \(T _ { 1 }\) and state the row operations you use.
  3. Given that \(T _ { 1 }\) is not optimal, find an inequality for the value of \(k\).
  4. Perform a second complete iteration of the simplex algorithm to obtain tableau \(T _ { 2 }\) and state the row operations you use.
  5. Given that \(T _ { 2 }\) is optimal, find a second inequality for the value of \(k\).
  6. State the final value of each variable and give an expression for the final value of \(P\) in terms of \(k\).
  7. Hence find the range of possible values of \(P\).