Maclaurin series for ln(exponential expressions)

Finding Maclaurin series for logarithmic functions involving exponential expressions such as ln(e^x + c), ln(e^(ax) cos x), or ln(1 + e^x). These often involve simplifying using logarithm properties and may combine exponential and trigonometric derivatives.

4 questions

AQA FP3 2013 January Q6
6
  1. It is given that \(y = \ln \left( \mathrm { e } ^ { 3 x } \cos x \right)\).
    1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3 - \tan x\).
    2. Find \(\frac { \mathrm { d } ^ { 4 } y } { \mathrm {~d} x ^ { 4 } }\).
  2. Hence use Maclaurin's theorem to show that the first three non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln \left( \mathrm { e } ^ { 3 x } \cos x \right)\) are \(3 x - \frac { 1 } { 2 } x ^ { 2 } - \frac { 1 } { 12 } x ^ { 4 }\).
    (3 marks)
  3. Write down the expansion of \(\ln ( 1 + p x )\), where \(p\) is a constant, in ascending powers of \(x\) up to and including the term in \(x ^ { 2 }\).
    1. Find the value of \(p\) for which \(\lim _ { x \rightarrow 0 } \left[ \frac { 1 } { x ^ { 2 } } \ln \left( \frac { \mathrm { e } ^ { 3 x } \cos x } { 1 + p x } \right) \right]\) exists.
    2. Hence find the value of \(\lim _ { x \rightarrow 0 } \left[ \frac { 1 } { x ^ { 2 } } \ln \left( \frac { \mathrm { e } ^ { 3 x } \cos x } { 1 + p x } \right) \right]\) when \(p\) takes the value found in part (d)(i).
AQA FP3 2010 June Q5
5
  1. Write down the expansion of \(\cos 4 x\) in ascending powers of \(x\) up to and including the term in \(x ^ { 4 }\). Give your answer in its simplest form.
    1. Given that \(y = \ln \left( 2 - \mathrm { e } ^ { x } \right)\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x } , \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) and \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\).
      (You may leave your expression for \(\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } }\) unsimplified.)
    2. Hence, by using Maclaurin's theorem, show that the first three non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln \left( 2 - \mathrm { e } ^ { x } \right)\) are $$- x - x ^ { 2 } - x ^ { 3 }$$
  2. Find $$\lim _ { x \rightarrow 0 } \left[ \frac { x \ln \left( 2 - \mathrm { e } ^ { x } \right) } { 1 - \cos 4 x } \right]$$
AQA FP3 2007 June Q6
6
  1. The function f is defined by $$\mathrm { f } ( x ) = \ln \left( 1 + \mathrm { e } ^ { x } \right)$$ Use Maclaurin's theorem to show that when \(\mathrm { f } ( x )\) is expanded in ascending powers of \(x\) :
    1. the first three terms are $$\ln 2 + \frac { 1 } { 2 } x + \frac { 1 } { 8 } x ^ { 2 }$$
    2. the coefficient of \(x ^ { 3 }\) is zero.
  2. Hence write down the first two non-zero terms in the expansion, in ascending powers of \(x\), of \(\ln \left( \frac { 1 + \mathrm { e } ^ { x } } { 2 } \right)\).
  3. Use the series expansion $$\ln ( 1 + x ) = x - \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 3 } x ^ { 3 } - \ldots$$ to write down the first three terms in the expansion, in ascending powers of \(x\), of \(\ln \left( 1 - \frac { x } { 2 } \right)\).
  4. Use your answers to parts (b) and (c) to find $$\lim _ { x \rightarrow 0 } \left[ \frac { \ln \left( \frac { 1 + \mathrm { e } ^ { x } } { 2 } \right) + \ln \left( 1 - \frac { x } { 2 } \right) } { x - \sin x } \right]$$
AQA Further AS Paper 1 2021 June Q7
7 Show that the Maclaurin series for \(\ln ( \mathrm { e } + 2 \mathrm { e } x )\) is $$1 + 2 x - 2 x ^ { 2 } + a x ^ { 3 } - \ldots$$ where \(a\) is to be determined.