AQA FP3 2006 January — Question 4

Exam BoardAQA
ModuleFP3 (Further Pure Mathematics 3)
Year2006
SessionJanuary
TopicTaylor series
TypeDeduce related series from given series

4
  1. Use the series expansion $$\ln ( 1 + x ) = x - \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 3 } x ^ { 3 } - \frac { 1 } { 4 } x ^ { 4 } + \ldots$$ to write down the first four terms in the expansion, in ascending powers of \(x\), of \(\ln ( 1 - x )\).
  2. The function f is defined by $$\mathrm { f } ( x ) = \mathrm { e } ^ { \sin x }$$ Use Maclaurin's theorem to show that when \(\mathrm { f } ( x )\) is expanded in ascending powers of \(x\) :
    1. the first three terms are $$1 + x + \frac { 1 } { 2 } x ^ { 2 }$$
    2. the coefficient of \(x ^ { 3 }\) is zero.
  3. Find $$\lim _ { x \rightarrow 0 } \frac { \mathrm { e } ^ { \sin x } - 1 + \ln ( 1 - x ) } { x ^ { 2 } \sin x }$$ (4 marks)