AQA FP3 2006 January — Question 5

Exam BoardAQA
ModuleFP3 (Further Pure Mathematics 3)
Year2006
SessionJanuary
TopicFirst order differential equations (integrating factor)

5
  1. The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = x \ln x + \frac { y } { x }$$ and $$y ( 1 ) = 1$$
    1. Use the Euler formula $$y _ { r + 1 } = y _ { r } + h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with \(h = 0.1\), to obtain an approximation to \(y ( 1.1 )\).
    2. Use the formula $$y _ { r + 1 } = y _ { r - 1 } + 2 h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with your answer to part (a)(i) to obtain an approximation to \(y ( 1.2 )\), giving your answer to three decimal places.
    1. Show that \(\frac { 1 } { x }\) is an integrating factor for the first-order differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } - \frac { 1 } { x } y = x \ln x$$
    2. Solve this differential equation, given that \(y = 1\) when \(x = 1\).
    3. Calculate the value of \(y\) when \(x = 1.2\), giving your answer to three decimal places.