AQA FP3 (Further Pure Mathematics 3) 2006 January

Question 1
View details
1
  1. Find the roots of the equation \(m ^ { 2 } + 2 m + 2 = 0\) in the form \(a + i b\).
    (2 marks)
    1. Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = 4 x$$
    2. Hence express \(y\) in terms of \(x\), given that \(y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 2\) when \(x = 0\).
Question 2
View details
2
  1. Find \(\int _ { 0 } ^ { a } x \mathrm { e } ^ { - 2 x } \mathrm {~d} x\), where \(a > 0\).
  2. Write down the value of \(\lim _ { a \rightarrow \infty } a ^ { k } \mathrm { e } ^ { - 2 a }\), where \(k\) is a positive constant.
  3. Hence find \(\int _ { 0 } ^ { \infty } x \mathrm { e } ^ { - 2 x } \mathrm {~d} x\).
Question 3
View details
3
  1. Show that \(y = x ^ { 3 } - x\) is a particular integral of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + \frac { 2 x y } { x ^ { 2 } - 1 } = 5 x ^ { 2 } - 1$$
  2. By differentiating \(\left( x ^ { 2 } - 1 \right) y = c\) implicitly, where \(y\) is a function of \(x\) and \(c\) is a constant, show that \(y = \frac { c } { x ^ { 2 } - 1 }\) is a solution of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + \frac { 2 x y } { x ^ { 2 } - 1 } = 0$$
  3. Hence find the general solution of $$\frac { \mathrm { d } y } { \mathrm {~d} x } + \frac { 2 x y } { x ^ { 2 } - 1 } = 5 x ^ { 2 } - 1$$
Question 4
View details
4
  1. Use the series expansion $$\ln ( 1 + x ) = x - \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 3 } x ^ { 3 } - \frac { 1 } { 4 } x ^ { 4 } + \ldots$$ to write down the first four terms in the expansion, in ascending powers of \(x\), of \(\ln ( 1 - x )\).
  2. The function f is defined by $$\mathrm { f } ( x ) = \mathrm { e } ^ { \sin x }$$ Use Maclaurin's theorem to show that when \(\mathrm { f } ( x )\) is expanded in ascending powers of \(x\) :
    1. the first three terms are $$1 + x + \frac { 1 } { 2 } x ^ { 2 }$$
    2. the coefficient of \(x ^ { 3 }\) is zero.
  3. Find $$\lim _ { x \rightarrow 0 } \frac { \mathrm { e } ^ { \sin x } - 1 + \ln ( 1 - x ) } { x ^ { 2 } \sin x }$$ (4 marks)
Question 5
View details
5
  1. The function \(y ( x )\) satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathrm { f } ( x , y )$$ where $$\mathrm { f } ( x , y ) = x \ln x + \frac { y } { x }$$ and $$y ( 1 ) = 1$$
    1. Use the Euler formula $$y _ { r + 1 } = y _ { r } + h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with \(h = 0.1\), to obtain an approximation to \(y ( 1.1 )\).
    2. Use the formula $$y _ { r + 1 } = y _ { r - 1 } + 2 h \mathrm { f } \left( x _ { r } , y _ { r } \right)$$ with your answer to part (a)(i) to obtain an approximation to \(y ( 1.2 )\), giving your answer to three decimal places.
    1. Show that \(\frac { 1 } { x }\) is an integrating factor for the first-order differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } - \frac { 1 } { x } y = x \ln x$$
    2. Solve this differential equation, given that \(y = 1\) when \(x = 1\).
    3. Calculate the value of \(y\) when \(x = 1.2\), giving your answer to three decimal places.
Question 6
View details
6
  1. A circle \(C _ { 1 }\) has cartesian equation \(x ^ { 2 } + ( y - 6 ) ^ { 2 } = 36\). Show that the polar equation of \(C _ { 1 }\) is \(r = 12 \sin \theta\).
  2. A curve \(C _ { 2 }\) with polar equation \(r = 2 \sin \theta + 5,0 \leqslant \theta \leqslant 2 \pi\) is shown in the diagram.
    \includegraphics[max width=\textwidth, alt={}, center]{b572aeb5-bcbb-4d50-964c-7f37e223f51d-5_545_837_559_651} Calculate the area bounded by \(C _ { 2 }\).
  3. The circle \(C _ { 1 }\) intersects the curve \(C _ { 2 }\) at the points \(P\) and \(Q\). Find, in surd form, the area of the quadrilateral \(O P M Q\), where \(M\) is the centre of the circle and \(O\) is the pole.
    (6 marks)