AQA FP1 (Further Pure Mathematics 1) 2005 June

Question 1
View details
1 The matrices \(\mathbf { A }\) and \(\mathbf { B }\) are defined by $$\mathbf { A } = \left[ \begin{array} { l l } 3 & 4
4 & 3 \end{array} \right] \quad \mathbf { B } = \left[ \begin{array} { l l } 0 & 2
2 & 0 \end{array} \right]$$
  1. Calculate the matrices:
    1. \(\mathbf { A } + \mathbf { B }\);
    2. \(\mathbf { A B }\).
  2. Show that \(\mathbf { A } + \mathbf { B } - \mathbf { A B } = k \mathbf { I }\), where \(k\) is an integer and \(\mathbf { I }\) is the \(2 \times 2\) identity matrix.
    (2 marks)
Question 2
View details
2 A curve satisfies the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \sin 2 x$$ where the angle \(2 x\) is measured in radians.
Starting at the point \(( 0.5,1 )\) on the curve, use a step-by-step method with a step length of 0.1 to estimate the value of \(y\) at \(x = 0.7\). Give your answer to three significant figures.
(6 marks)
Question 3
View details
3
  1. Use the formulae $$\begin{gathered} \sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )
    \sum _ { r = 1 } ^ { n } r ^ { 3 } = \frac { 1 } { 4 } n ^ { 2 } ( n + 1 ) ^ { 2 } \end{gathered}$$ and $$\sum _ { r = 1 } ^ { n } r ^ { 2 } ( r - 1 ) = \frac { 1 } { 12 } n \left( n ^ { 2 } - 1 \right) ( 3 n + 2 )$$ (4 marks)
  2. Use the result from part (a) to find the value of $$\sum _ { r = 4 } ^ { 11 } r ^ { 2 } ( r - 1 )$$ (3 marks)
Question 4
View details
4 The function f is defined for all real values of \(x\) by $$\mathrm { f } ( x ) = x ^ { 3 } + x$$
  1. Express \(\mathrm { f } ( 2 + h ) - \mathrm { f } ( 2 )\) in the form $$p h + q h ^ { 2 } + r h ^ { 3 }$$ where \(p , q\) and \(r\) are integers.
  2. Use your answer to part (a) to find the value of \(\mathrm { f } ^ { \prime } ( 2 )\).
Question 5
View details
5 Find the general solutions of the following equations, giving your answers in terms of \(\pi\) :
  1. \(\quad \tan 3 x = \sqrt { 3 }\);
  2. \(\quad \tan \left( 3 x - \frac { \pi } { 3 } \right) = - \sqrt { 3 }\).
Question 6
View details
6 The equation $$x ^ { 2 } - 4 x + 13 = 0$$ has roots \(\alpha\) and \(\beta\).
    1. Write down the values of \(\alpha + \beta\) and \(\alpha \beta\).
    2. Deduce that \(\alpha ^ { 2 } + \beta ^ { 2 } = - 10\).
    3. Explain why the statement \(\alpha ^ { 2 } + \beta ^ { 2 } = - 10\) implies that \(\alpha\) and \(\beta\) cannot both be real.
  1. Find in the form \(p + \mathrm { i } q\) the values of:
    1. \(( \alpha + \mathrm { i } ) + ( \beta + \mathrm { i } )\);
    2. \(( \alpha + \mathrm { i } ) ( \beta + \mathrm { i } )\).
  2. Hence find a quadratic equation with roots \(( \alpha + \mathrm { i } )\) and \(( \beta + \mathrm { i } )\).
Question 7
View details
7 [Figure 1, printed on the insert, is provided for use in this question.]
The diagram shows a triangle with vertices \(A ( 1,1 ) , B ( 3,1 )\) and \(C ( 3,2 )\).
\includegraphics[max width=\textwidth, alt={}, center]{5bfb4d19-8772-43d7-b667-bd124d2504a8-04_1114_1141_552_360}
  1. The triangle \(D E F\) is obtained by applying to triangle \(A B C\) the transformation T represented by the matrix $$\left[ \begin{array} { r r } 2 & 2
    - 2 & 2 \end{array} \right]$$
    1. Calculate the coordinates of \(D , E\) and \(F\).
    2. Draw the triangle \(D E F\) on Figure 1.
  2. Given that T is a combination of an enlargement and a rotation, find the exact value of:
    1. the scale factor of the enlargement;
    2. the magnitude of the angle of the rotation.
Question 8
View details
8 The diagram shows a part of the curve $$\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 6 } = 1$$ and a chord \(P Q\) of the curve, where \(P\) lies on the \(x\)-axis.
\includegraphics[max width=\textwidth, alt={}, center]{5bfb4d19-8772-43d7-b667-bd124d2504a8-05_751_1072_680_459}
  1. Write down the coordinates of \(P\).
  2. The gradient of the chord \(P Q\) is 2 . Find the coordinates of \(Q\).
Question 9
View details
9 The function f is defined by $$f ( x ) = \frac { x ^ { 2 } + 4 x } { x ^ { 2 } + 9 }$$
    1. The graph of \(y = \mathrm { f } ( x )\) has an asymptote which is parallel to the \(x\)-axis. Find the equation of this asymptote.
    2. Explain why the graph of \(y = \mathrm { f } ( x )\) has no asymptotes parallel to the \(y\)-axis.
  1. Show that the equation \(\mathrm { f } ( x ) = k\) has two equal roots if \(9 k ^ { 2 } - 9 k - 4 = 0\).
  2. Hence find the coordinates of the two stationary points on the graph of \(y = \mathrm { f } ( x )\).
    SurnameOther Names
    Centre NumberCandidate Number
    Candidate Signature
    General Certificate of Education
    June 2005
    Advanced Subsidiary Examination MATHEMATICS
    MFP1
    Unit Further Pure 1 ASSESSMENT and
    QUALIFICATIONS
    ALLIANCE Wednesday 22 June 2005 Afternoon Session Insert for use in Question 7.
    Fill in the boxes at the top of this page.
    Fasten this insert securely to your answer book.