3 [Figure 1, printed on the insert, is provided for use in this question.]
The curve with equation \(y = x ^ { 3 } + 5 x - 4\) intersects the \(x\)-axis at the point \(A\), where \(x = \alpha\).
- Show that \(\alpha\) lies between 0.5 and 1 .
- Show that the equation \(x ^ { 3 } + 5 x - 4 = 0\) can be rearranged into the form
$$x = \frac { 1 } { 5 } \left( 4 - x ^ { 3 } \right)$$
- Use the iteration \(x _ { n + 1 } = \frac { 1 } { 5 } \left( 4 - x _ { n } { } ^ { 3 } \right)\) with \(x _ { 1 } = 0.5\) to find \(x _ { 3 }\), giving your answer to three decimal places.
- The sketch on Figure 1 shows parts of the graphs of \(y = \frac { 1 } { 5 } \left( 4 - x ^ { 3 } \right)\) and \(y = x\), and the position of \(x _ { 1 }\).
On Figure 1, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of \(x _ { 2 }\) and \(x _ { 3 }\) on the \(x\)-axis.