A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q8
OCR Pure 1 2018 March — Question 8
Exam Board
OCR
Module
Pure 1 (Pure Mathematics 1)
Year
2018
Session
March
Topic
Reciprocal Trig & Identities
8
Given that \(y = \sec x\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \sec x \tan x\).
In this question you must show detailed reasoning. Find the exact value of \(\int _ { \frac { 1 } { 12 } \pi } ^ { \frac { 1 } { 6 } \pi } ( \sec 2 x + \tan 2 x ) ^ { 2 } \mathrm {~d} x\).
This paper
(11 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11