OCR Pure 1 (Pure Mathematics 1) 2018 March

Question 1
View details
1 A circle with equation \(x ^ { 2 } + y ^ { 2 } + 6 x - 4 y = k\) has a radius of 4 .
  1. Find the coordinates of the centre of the circle.
  2. Find the value of the constant \(k\).
Question 2
View details
2
  1. Given that \(| n | = 5\), find the greatest value of \(| 2 n - 3 |\), justifying your answer.
  2. Solve the equation \(| 3 x - 6 | = | x - 6 |\).
Question 3
View details
3 The equation \(k x ^ { 2 } + ( k - 6 ) x + 2 = 0\) has two distinct real roots. Find the set of possible values of the constant \(k\), giving your answer in set notation.
Question 4
View details
4
  1. Sketch the curves \(y = \frac { 3 } { x ^ { 2 } }\) and \(y = x ^ { 2 } - 2\) on the axes provided in the Printed Answer Booklet.
  2. In this question you must show detailed reasoning. Find the exact coordinates of the points of intersection of the curves \(y = \frac { 3 } { x ^ { 2 } }\) and \(y = x ^ { 2 } - 2\).
Question 5
View details
5 An ice cream seller expects that the number of sales will increase by the same amount every week from May onwards. 150 ice creams are sold in Week 1 and 166 ice creams are sold in Week 2. The ice cream seller makes a profit of \(\pounds 1.25\) for each ice cream sold.
  1. Find the expected profit in Week 10.
  2. In which week will the total expected profits first exceed \(\pounds 5000\) ?
  3. Give two reasons why this model may not be appropriate.
Question 6
View details
6 Prove by contradiction that \(\sqrt { 7 }\) is irrational.
Question 7
View details
7 Two lifeboat stations, \(P\) and \(Q\), are situated on the coastline with \(Q\) being due south of \(P\). A stationary ship is at sea, at a distance of 4.8 km from \(P\) and a distance of 2.2 km from \(Q\). The ship is on a bearing of \(155 ^ { \circ }\) from \(P\).
  1. Find any possible bearings of the ship from \(Q\).
  2. Find the shortest distance from the ship to the line \(P Q\).
  3. Give a reason why the actual distance from the ship to the coastline may be different to your answer to part (ii).
Question 8
View details
8
  1. Given that \(y = \sec x\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \sec x \tan x\).
  2. In this question you must show detailed reasoning. Find the exact value of \(\int _ { \frac { 1 } { 12 } \pi } ^ { \frac { 1 } { 6 } \pi } ( \sec 2 x + \tan 2 x ) ^ { 2 } \mathrm {~d} x\).
Question 9
View details
9
  1. Express \(\frac { 5 + 4 x - 3 x ^ { 2 } } { ( 1 - 2 x ) ( 2 + x ) ^ { 2 } }\) in three partial fractions.
  2. Hence find the first three terms in the expansion of \(\frac { 5 + 4 x - 3 x ^ { 2 } } { ( 1 - 2 x ) ( 2 + x ) ^ { 2 } }\) in ascending powers of \(x\).
  3. State the set of values for which the expansion in part (ii) is valid.
Question 10
View details
10 In this question you must show detailed reasoning.
Show that the curve with equation \(x ^ { 2 } - 4 x y + 8 y ^ { 3 } - 4 = 0\) has exactly one stationary point.
Question 11
View details
11 The height, in metres, of the sea at a coastal town during a day may be modelled by the function $$\mathrm { f } ( t ) = 1.7 + 0.8 \sin ( 30 t ) ^ { \circ }$$ where \(t\) is the number of hours after midnight.
  1. (a) Find the maximum height of the sea as given by this model.
    (b) Find the time of day at which this maximum height first occurs.
  2. Determine the time when, according to this model, the height of the sea will first be 1.2 m . The height, in metres, at a different coastal town during a day may be modelled by the function $$\mathrm { g } ( t ) = a + b \sin ( c t + d ) ^ { \circ }$$ where \(t\) is the number of hours after midnight.
  3. It is given that at this different coastal town the maximum height of the sea is 3.1 m , and this height occurs at 0500 and 1700. The minimum height of the sea is 0.7 m , and this height occurs at 1100 and 2300 . Find the values of the constants \(a , b , c\) and \(d\).
  4. It is instead given that the maximum height of the sea actually occurs at 0500 and 1709 . State, with a reason, how this will affect the value of \(c\) found in part (iii).
    \includegraphics[max width=\textwidth, alt={}, center]{74a37bca-0b28-4c48-bd21-a9304f31b8f8-6_563_568_322_751} The diagram shows the curve \(y = \mathrm { e } ^ { \sqrt { x + 1 } }\) for \(x \geqslant 0\).
  5. Use the substitution \(u ^ { 2 } = x + 1\) to find \(\int \mathrm { e } ^ { \sqrt { x + 1 } } \mathrm {~d} x\).
  6. Make \(x\) the subject of the equation \(y = \mathrm { e } ^ { \sqrt { x + 1 } }\).
  7. Hence show that \(\int _ { \mathrm { e } } ^ { \mathrm { e } ^ { 4 } } \left( ( \ln y ) ^ { 2 } - 1 \right) \mathrm { d } y = 9 \mathrm { e } ^ { 4 }\). \section*{END OF QUESTION PAPER} \section*{OCR} Oxford Cambridge and RSA