Derive general variance formula

A question is this type if and only if it asks to prove or show the general formula Var(X) = (n² - 1)/12 for a discrete uniform distribution U(n) using summation formulas.

3 questions

OCR MEI Further Statistics Minor 2020 November Q6
6
  1. The random variable \(X\) has a uniform distribution over the values \(\{ 1,2 , \ldots , n \}\). Show that \(\operatorname { Var } ( X )\) is given by \(\frac { 1 } { 12 } \left( n ^ { 2 } - 1 \right)\).
  2. The random variable \(Y\) has a uniform distribution over the values \(\{ 1,3,5 , \ldots , 2 n - 1 \}\). Using the result in part (a) or otherwise, show that \(\operatorname { Var } ( Y )\) is given by \(\frac { 1 } { 3 } \left( n ^ { 2 } - 1 \right)\).
  3. Given that \(n = 100\), find the least value of \(k\) for which \(\mathrm { P } ( \mu - k \sigma \leqslant Y \leqslant \mu + k \sigma ) = 1\), where the mean and standard deviation of \(Y\) are represented by \(\mu\) and \(\sigma\) respectively.
OCR FS1 AS 2017 December Q4
4 The discrete random variable \(X\) has the distribution \(\mathrm { U } ( n )\).
  1. Use the results \(\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )\) and \(\mathrm { E } ( X ) = \frac { n + 1 } { 2 }\) to show that \(\operatorname { Var } ( X ) = \frac { 1 } { 12 } \left( n ^ { 2 } - 1 \right)\). It is given that \(\mathrm { E } ( X ) = 13\).
  2. Find the value of \(n\).
  3. Find \(\mathrm { P } ( X < 7.5 )\). It is given that \(\mathrm { E } ( a X + b ) = 10\) and \(\operatorname { Var } ( a X + b ) = 117\), where \(a\) and \(b\) are positive.
  4. Calculate the value of \(a\) and the value of \(b\).
AQA Further AS Paper 2 Statistics 2019 June Q5
5 marks
5 The discrete random variable \(X\) has the following probability distribution function $$\mathrm { P } ( X = x ) = \begin{cases} \frac { 1 } { n } & x = 1,2 , \ldots , n
0 & \text { otherwise } \end{cases}$$ 5
    1. Prove that \(\mathrm { E } ( X ) = \frac { n + 1 } { 2 }\)
      [0pt] [3 marks]
      5
  1. (ii) Prove that \(\operatorname { Var } ( X ) = \frac { n ^ { 2 } - 1 } { 12 }\)
    5
  2. State two conditions under which a discrete uniform distribution can be used to model the score when a cubic dice is rolled.
    [2 marks]