| Exam Board | OCR |
| Module | Further Pure Core 2 (Further Pure Core 2) |
| Year | 2023 |
| Session | June |
| Topic | Polar coordinates |
10 In this question you must show detailed reasoning.
A region, \(R\), of the floor of an art gallery is to be painted for the purposes of an art installation. A suitable polar coordinate system is set up on the floor of the gallery with units in metres and radians. \(R\) is modelled as being the region enclosed by two curves, \(C _ { 1 }\) and \(C _ { 2 }\). The polar equations of \(C _ { 1 }\) and \(C _ { 2 }\) are
$$\begin{array} { l l }
C _ { 1 } : r = 5 , & - \frac { 1 } { 2 } \pi \leqslant \theta \leqslant \frac { 1 } { 2 } \pi
C _ { 2 } : r = 3 \cosh \theta , & - \frac { 1 } { 2 } \pi \leqslant \theta \leqslant \frac { 1 } { 2 } \pi
\end{array}$$
Both curves are shown in the diagram, with \(R\) indicated.
\includegraphics[max width=\textwidth, alt={}, center]{7b2bfb4e-524f-4d1c-ae98-075c7fb404f9-6_1481_821_836_251}
The gallery must buy tins of paint to paint \(R\). Each tin of paint can cover an area of \(0.5 \mathrm {~m} ^ { 2 }\).
Determine the smallest number of tins of paint that the gallery must buy in order to be able to paint \(R\) completely.