8 A surge in the current, \(I\) units, through an electrical component at a time, \(t\) seconds, is to be modelled. The surge starts when \(t = 0\) and there is initially no current through the component. When the current has surged for 1 second it is measured as being 5 units. While the surge is occurring, \(I\) is modelled by the following differential equation.
\(\left( 2 t - t ^ { 2 } \right) \frac { d l } { d t } = \left( 2 t - t ^ { 2 } \right) ^ { \frac { 3 } { 2 } } - 2 ( t - 1 ) l\)
- By using an integrating factor show that, according to the model, while the surge is occurring, \(I\) is given by \(\mathrm { I } = \left( 2 \mathrm { t } - \mathrm { t } ^ { 2 } \right) \left( \sin ^ { - 1 } ( \mathrm { t } - 1 ) + 5 \right)\).
The surge lasts until there is again no current through the component.
- Determine the length of time that the surge lasts according to the model.
- Determine, according to the model, the rate of increase of the current at the start of the surge. Give your answer in an exact form.