OCR Further Pure Core 2 2023 June — Question 7

Exam BoardOCR
ModuleFurther Pure Core 2 (Further Pure Core 2)
Year2023
SessionJune
TopicIntegration with Partial Fractions

7 In this question you must show detailed reasoning.
  1. Show that $$\sum _ { r = 1 } ^ { n } \frac { 5 r + 6 } { r ^ { 3 } + r ^ { 2 } } = \frac { a } { n + 1 } + b + c \sum _ { r = 1 } ^ { n } \frac { 1 } { r ^ { 2 } }$$ where \(a\), \(b\) and \(c\) are integers whose values are to be determined. You are given that \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { r ^ { 2 } }\) exists and is equal to \(\frac { 1 } { 6 } \pi ^ { 2 }\).
  2. Show that \(\sum _ { r = 1 } ^ { \infty } \frac { 5 r + 6 } { r ^ { 3 } + r ^ { 2 } }\) exists and is equal to \(( \pi - 1 ) ( \pi + 1 )\).