6 Answer this question on the insert provided.
The table shows a partially completed dynamic programming tabulation for solving a maximin problem.
| Stage | State | Action | Working | Maximin |
| \multirow{2}{*}{1} | 0 | 0 | 4 | 4 |
| 1 | 0 | 3 | 3 |
| \multirow{6}{*}{2} | 0 | 0 | \(\min ( 6,4 ) = 4\) | \multirow{2}{*}{} |
| | 1 | \(\min ( 2,3 ) = 2\) | |
| \multirow{2}{*}{1} | 0 | \(\min ( 2,4 ) =\) | \multirow{2}{*}{} |
| | 1 | \(\min ( 4,3 ) =\) | |
| \multirow{2}{*}{2} | 0 | min(2, | \multirow{2}{*}{} |
| | 1 | min(3, | |
| \multirow{3}{*}{3} | \multirow{3}{*}{0} | 0 | min(5, | \multirow{3}{*}{} |
| | 1 | \(\min ( 5\), | |
| | 2 | \(\min ( 2\), | |
- Complete the last two columns of the table in the insert.
- State the maximin value and write down the maximin route.