OCR D2 2007 January — Question 4

Exam BoardOCR
ModuleD2 (Decision Mathematics 2)
Year2007
SessionJanuary
TopicCombinations & Selection

4 The table gives the pay-off matrix for a zero-sum game between two players, Rowan and Colin. \begin{table}[h]
\captionsetup{labelformat=empty} \caption{Colin}
\cline { 2 - 5 }Strategy \(X\)Strategy \(Y\)Strategy \(Z\)
\cline { 2 - 5 } RowanStrategy \(P\)5- 3- 2
\cline { 2 - 5 }Strategy \(Q\)- 431
\cline { 2 - 5 }
\cline { 2 - 5 }
\end{table} Rowan makes a random choice between strategies \(P\) and \(Q\), choosing strategy \(P\) with probability \(p\) and strategy \(Q\) with probability \(1 - p\).
  1. Write down and simplify an expression for the expected pay-off for Rowan when Colin chooses strategy \(X\).
  2. Using graph paper, draw a graph to show Rowan's expected pay-off against \(p\) for each of Colin's choices of strategy.
  3. Using your graph, find the optimal value of \(p\) for Rowan.
  4. Rowan plays using the optimal value of \(p\). Explain why, in the long run, Colin cannot expect to win more than 0.25 per game.