Edexcel FD1 2021 June — Question 8

Exam BoardEdexcel
ModuleFD1 (Further Decision 1)
Year2021
SessionJune
TopicCritical Path Analysis

8. Susie is preparing for a triathlon event that is taking place next month. A triathlon involves three activities: swimming, cycling and running. Susie decides that in her training next week she should
  • maximise the total time spent cycling and running
  • train for at most 39 hours
  • spend at least \(40 \%\) of her time swimming
  • spend a total of at least 28 hours of her time swimming and running
Susie needs to determine how long she should spend next week training for each activity. Let
  • \(x\) represent the number of hours swimming
  • \(y\) represent the number of hours cycling
  • \(z\) represent the number of hours running
    1. Formulate the information above as a linear programming problem. State the objective and list the constraints as simplified inequalities with integer coefficients.
      (5)
Susie decides to solve this linear programming problem by using the two-stage Simplex method.
  • Set up an initial tableau for solving this problem using the two-stage Simplex method. As part of your solution you must show how
    • the constraints have been made into equations using slack variables, exactly one surplus variable and exactly one artificial variable
    • the rows for the two objective functions are formed
      (6)
    The following tableau \(T\) is obtained after one iteration of the second stage of the two-stage Simplex method.
    b.v.\(x\)\(y\)\(z\)\(s _ { 1 }\)\(\mathrm { S } _ { 2 }\)\(S _ { 3 }\)Value
    \(y\)01010111
    \(s _ { 2 }\)005-21-562
    \(x\)10100-128
    \(P\)00-110111
  • Obtain a suitable pivot for a second iteration. You must give reasons for your answer.
  • Starting from tableau \(T\), solve the linear programming problem by performing one further iteration of the second stage of the two-stage Simplex method. You should make your method clear by stating the row operations you use.