Edexcel FP2 2024 June — Question 8

Exam BoardEdexcel
ModuleFP2 (Further Pure Mathematics 2)
Year2024
SessionJune
TopicHyperbolic functions

8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c20a4592-74c6-4f58-b63b-984b171b1bfd-28_552_380_264_468} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c20a4592-74c6-4f58-b63b-984b171b1bfd-28_524_446_274_1151} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 1 shows a French horn with a detachable bell section.
The shape of the bell section can be modelled by rotating an exponential curve through \(360 ^ { \circ }\) about the \(x\)-axis, where units are centimetres. The model uses the curve shown in Figure 2, with equation $$y = \frac { 9 } { 2 } e ^ { \frac { 1 } { 9 } x } \quad 0 \leqslant x \leqslant 9$$
  1. Show that, according to this model, the external surface area of the bell section is given by $$K \int _ { 0 } ^ { 9 } \mathrm { e } ^ { \frac { 1 } { 9 } x } \sqrt { 4 + \mathrm { e } ^ { \frac { 2 } { 9 } x } } \mathrm {~d} x$$ where \(K\) is a real constant to be determined.
  2. Use the substitution \(u = e ^ { \frac { 1 } { 9 } x }\) to show that $$\int _ { 0 } ^ { 9 } \mathrm { e } ^ { \frac { 1 } { 9 } x } \sqrt { 4 + \mathrm { e } ^ { \frac { 2 } { 9 } x } } \mathrm {~d} x = 9 \int _ { a } ^ { b } \frac { 2 u + u ^ { 3 } } { \sqrt { 4 u ^ { 2 } + u ^ { 4 } } } \mathrm {~d} u + 18 \int _ { a } ^ { b } \frac { 1 } { \sqrt { 4 + u ^ { 2 } } } \mathrm {~d} u$$ where \(a\) and \(b\) are constants to be determined. Hence, using algebraic integration,
  3. determine, according to the model, the external surface area of the bell section of the horn, giving your answer to 3 significant figures.