Edexcel FP2 (Further Pure Mathematics 2) 2024 June

Question 1
View details
  1. In this question you must show detailed reasoning.
Use Fermat's Little Theorem to determine the least positive residue of
\(21 { } ^ { 80 } ( \bmod 23 )\)
(4)
Question 2
View details
  1. Determine a closed form for the recurrence system
$$\begin{gathered} u _ { 1 } = 4 \quad u _ { 2 } = 6
u _ { n + 2 } = 6 u _ { n + 1 } - 9 u _ { n } \quad ( n = 1,2,3 , \ldots ) \end{gathered}$$
Question 3
View details
  1. In this question you must show all stages of your working. Solutions relying on calculator technology are not acceptable.
    1. Use the Euclidean Algorithm to determine the highest common factor \(h\) of 234 and 96
    2. Hence determine integers \(a\) and \(b\) such that
    $$234 a + 96 b = h$$
  2. Solve the congruence equation $$96 x \equiv 36 ( \bmod 234 )$$
Question 4
View details
4. $$\mathbf { A } = \left( \begin{array} { r r r } 4 & 2 & 0
2 & p & - 2
0 & - 2 & 2 \end{array} \right) \quad \text { where } p \text { is a constant }$$ Given that \(\left( \begin{array} { r } 2
- 1
2 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\),
  1. determine the eigenvalue corresponding to this eigenvector.
  2. Hence show that \(p = 3\)
  3. Determine
    1. the remaining eigenvalues of \(\mathbf { A }\),
    2. corresponding eigenvectors for these eigenvalues.
  4. Hence determine a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } = \mathbf { P D P } ^ { \mathrm { T } }\)
Question 5
View details
    1. A circle \(C\) in the complex plane is defined by the locus of points satisfying
$$| z - 3 i | = 2 | z |$$
  1. Determine a Cartesian equation for \(C\), giving your answer in simplest form.
  2. On an Argand diagram, shade the region defined by $$\{ z \in \mathbb { C } : | z - 3 \mathrm { i } | > 2 | z | \}$$ (ii) The transformation \(T\) from the \(z\)-plane to the \(w\)-plane is given by $$w = z ^ { 3 }$$
  3. Describe the geometric effect of \(T\). The region \(R\) in the \(z\)-plane is given by $$\left\{ z \in \mathbb { C } : 0 < \arg z < \frac { \pi } { 4 } \right\}$$
  4. On a different Argand diagram, sketch the image of \(R\) under \(T\).
Question 6
View details
  1. In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable.
$$I _ { n } = \int \frac { \cos ( n x ) } { \sin x } \mathrm {~d} x \quad n \geqslant 1$$
  1. Show that, for \(n \geqslant 1\) $$I _ { n + 2 } = \frac { 2 \cos ( n + 1 ) x } { n + 1 } + I _ { n }$$
  2. Hence determine the exact value of $$\int _ { \frac { \pi } { 4 } } ^ { \frac { \pi } { 3 } } \frac { \cos ( 5 x ) } { \sin x } d x$$ giving the answer in the form \(a + b \ln c\) where \(a , b\) and \(c\) are rational numbers to be found.
Question 7
View details
  1. The set of matrices \(G = \{ \mathbf { I } , \mathbf { A } , \mathbf { B } , \mathbf { C } , \mathbf { D } , \mathbf { E } \}\) where
$$\mathbf { I } = \left( \begin{array} { l l } 1 & 0
0 & 1 \end{array} \right) \quad \mathbf { A } = \left( \begin{array} { l l } 0 & 1
1 & 0 \end{array} \right) \quad \mathbf { B } = \left( \begin{array} { l l } 1 & 1
1 & 0 \end{array} \right) \quad \mathbf { C } = \left( \begin{array} { l l } 1 & 1
0 & 1 \end{array} \right) \quad \mathbf { D } = \left( \begin{array} { l l } 1 & 0
1 & 1 \end{array} \right) \quad \mathbf { E } = \left( \begin{array} { l l } 0 & 1
1 & 1 \end{array} \right)$$ with the operation \(\otimes _ { 2 }\) of matrix multiplication with entries evaluated modulo 2 , forms a group.
  1. Show that \(\mathbf { B }\) is an element of order 3 in \(G\).
  2. Determine the orders of the other elements of \(G\).
  3. Give a reason why \(G\) is not isomorphic to
    1. a cyclic group of order 6
    2. the group of symmetries of a regular hexagon. The group \(H\) of permutations of the numbers 1, 2 and 3 contains the following elements, denoted in two-line notation, $$\begin{array} { l l l } e = \left( \begin{array} { l l l } 1 & 2 & 3
      1 & 2 & 3 \end{array} \right) & a = \left( \begin{array} { l l l } 1 & 2 & 3
      2 & 3 & 1 \end{array} \right) & b = \left( \begin{array} { l l l } 1 & 2 & 3
      3 & 1 & 2 \end{array} \right)
      c = \left( \begin{array} { l l } 1 & 2
      1 & 3
      2 \end{array} \right) & d = \left( \begin{array} { l l l } 1 & 2 & 3
      2 & 1 & 3 \end{array} \right) & f = \left( \begin{array} { l l } 1 & 2
      3 & 2 \end{array} \right) \end{array}$$
  4. Determine an isomorphism between the groups \(G\) and \(H\).
Question 8
View details
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c20a4592-74c6-4f58-b63b-984b171b1bfd-28_552_380_264_468} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c20a4592-74c6-4f58-b63b-984b171b1bfd-28_524_446_274_1151} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 1 shows a French horn with a detachable bell section.
The shape of the bell section can be modelled by rotating an exponential curve through \(360 ^ { \circ }\) about the \(x\)-axis, where units are centimetres. The model uses the curve shown in Figure 2, with equation $$y = \frac { 9 } { 2 } e ^ { \frac { 1 } { 9 } x } \quad 0 \leqslant x \leqslant 9$$
  1. Show that, according to this model, the external surface area of the bell section is given by $$K \int _ { 0 } ^ { 9 } \mathrm { e } ^ { \frac { 1 } { 9 } x } \sqrt { 4 + \mathrm { e } ^ { \frac { 2 } { 9 } x } } \mathrm {~d} x$$ where \(K\) is a real constant to be determined.
  2. Use the substitution \(u = e ^ { \frac { 1 } { 9 } x }\) to show that $$\int _ { 0 } ^ { 9 } \mathrm { e } ^ { \frac { 1 } { 9 } x } \sqrt { 4 + \mathrm { e } ^ { \frac { 2 } { 9 } x } } \mathrm {~d} x = 9 \int _ { a } ^ { b } \frac { 2 u + u ^ { 3 } } { \sqrt { 4 u ^ { 2 } + u ^ { 4 } } } \mathrm {~d} u + 18 \int _ { a } ^ { b } \frac { 1 } { \sqrt { 4 + u ^ { 2 } } } \mathrm {~d} u$$ where \(a\) and \(b\) are constants to be determined. Hence, using algebraic integration,
  3. determine, according to the model, the external surface area of the bell section of the horn, giving your answer to 3 significant figures.