Edexcel FP2 2024 June — Question 5

Exam BoardEdexcel
ModuleFP2 (Further Pure Mathematics 2)
Year2024
SessionJune
TopicComplex Numbers Argand & Loci

    1. A circle \(C\) in the complex plane is defined by the locus of points satisfying
$$| z - 3 i | = 2 | z |$$
  1. Determine a Cartesian equation for \(C\), giving your answer in simplest form.
  2. On an Argand diagram, shade the region defined by $$\{ z \in \mathbb { C } : | z - 3 \mathrm { i } | > 2 | z | \}$$ (ii) The transformation \(T\) from the \(z\)-plane to the \(w\)-plane is given by $$w = z ^ { 3 }$$
  3. Describe the geometric effect of \(T\). The region \(R\) in the \(z\)-plane is given by $$\left\{ z \in \mathbb { C } : 0 < \arg z < \frac { \pi } { 4 } \right\}$$
  4. On a different Argand diagram, sketch the image of \(R\) under \(T\).